$$qn - mr = y \left\{ -5000k^3y^3 + \left(-50p_5^2 + 280p_4k^3 \right)y^3 + \left(\frac{2}{5} p_4p_5^3 - 1056k^3p_5 - \frac{248}{25} p_4^3k^3 \right)y + k^3 \left(-2048k^4 + \frac{8}{125} p_4^3 + \frac{32}{5} kp_4p_5 \right) \right\};$$

$$vm - 8kq = y \left\{ 125000y^3 - 3000p_4y^3 + \left(24p_4^3 + 800kp_5 \right)y - \left(-2048k^4 + \frac{8}{125} p_4^3 + \frac{32}{5} kp_4p_5 \right) \right\}.$$
Stituting in (18) these values of $m = 8kp$ or $m = 8kp$.

By substituting in (18) these values of vn = 8kr, qn = mv, vm = 8kq, we get $F(y) = q_0 y^5 + q_1 y^5 + \ldots + q_5 y + q_6 = 0,$ (19) where

where
$$\begin{aligned} q_0 &= -625000000, \\ q_1 &= 50000000p_4, \\ q_2 &= -200000 \left(200kp_5 + 11p_4^8\right), \\ q_3 &= 102400000k^4 + 1280000kp_4p_5 + 44800p_4^3, \\ q_4 &= -\left(25600kp_4^3p_5 + 4096000k^4p_4 + 640000p_5^3k^3 + 448p_4^4\right), \\ q_5 &= 8192k^2p_4p_5^3 - 2048 \times 1856k^5p_5 + 64k^3 + \frac{49152}{5}k^4p_4^3 + \frac{6144}{25}kp_4^3p_5 + \frac{6784}{3125}p_4^5, \\ q_6 &= -\left(\frac{8}{125}p_4^3 - 2048k^4 + \frac{32}{5}kp_4p_5\right)^3. \end{aligned}$$

§8. Assuming now that the coefficients p_3 , p_4 , p_5 are commensurable quantities, let the commensurable root y of equation (19) be found. Then a^2z is known. Then, from (11) and (16), t or $\frac{c}{a}$ is found.

§9. At this stage, as was indicated in §3, two courses are open to us. One is to proceed to find u_1^5 , u_2^5 , u_3^5 , u_4^5 without troubling ourselves to inquire what a, c, c, θ , ϕ and h are separately. This, the natural and the shortest course, we will now follow. Since a^2z and $\frac{c}{a}$ are known, their product acz is known. And, by (14), A is known. Therefore $ezhe(\theta^2-\phi^2z)$, which, by the last of equations (7), is equal to -aczA, is known. Hence by the first of equations (8), B is known. We might even more simply, acz being known, find B from the second of equations (9). The second of equations (8) gives us

$$y(B' \checkmark z) = 2c \checkmark z(k^2 - c^2 z) + a^2 z k(a \checkmark z) - 2k A a \checkmark z.$$
 (20)

Now acz is known, and it is the same as $(a \checkmark z)(c \checkmark z)$; consequently, the rights