A "IOLL.WAY," AND WHAT IT IS.

At a recent mecting of the Civil Engineors Club of Chicago, one of their members, Mr. S. A. Clemens, read a very interest. ing yaper on a novel modo of conveyance which he terms a "roll-way." 'i he author is a practical engineer, and therefore descrves to bo henrd. He begins by claiming for it greater safety and durability and equal speed than the ordinary rallway. After the schemo has been tried and found successful, the claims may be admitted, but at present it will be wise to withhold judgment. The following is an outline of the system :-

The track of this newly-invented roadway consists of a scries of pairs of small wheels or rollers, cach supported by journal boxes, or equivalents, bolted to timbers, like railrord ties, which are placed side by side and set fast in the ground. The wey-rollers of each pair are placed parallul-from 3 to 5 feet apart, accordiug to any actermined bauge - and the pairs of rollers may be 8 to 16 feet apart on the line. Midway between the rollers-thus ranged in two parallel rows, is a single guide-rail, the top of which is 3 er inches above the level of the rollers, and its connected sections are strongly fastened to the ground-timbers to which the rollers are secured - thus tying the entire superstructure longitudinally together.

The way-rollers, made of chilled iron, or converted steel castings, are about 5 inches diameter, with 3 -inch faces, and bave on each side juurnals of $2 \frac{1}{2}$ inches in diancter and length, which revolvo on small steel, anti-friction rollers, in chillediron journal-boxes, so closed as to exclude both dust and rain. Or, preferably, the way-rollers may be steel or wrought iron tubes about 5 inches long by 4 inches outside diamcter, and five-eighths of an inch thick, revolving on steel anti-friction rollers of about threc-eighths of an inch diameter, which encircle and roll around a short fixed steel shaft 2 inches in diameter, the ends of which are held in supports of hard wood or iron, bolted to the ground-timbers. 'These tubular wayrollers are designed of threc-fold capacity to safely endure the train-weights at bighest sperd to which they are to be subjected, while combining low resistance from friction and inertia.

For the purnose of eccuring favourablo grades and curves the ground-line is prepared like the ordinary road-bed, with the exception that the grade is not necessarily required to be continuous.

The cars are to be from 30 to 50 feet in length, with timberrunners shod with steel, and elastic rubber cushions to run over the rollers, while a system of guide-rollers provided with fauges ron along the central or guide-rail to keep the cars from lenving the track. 'The outside rollers are placed at intervals, so that the runners of the car overlap at least three of them at the "same time, while they may bo nlaced closer together if it is found to be desirable.

TI e locomotives have an under constroction similar to the cars, with steel-shod runners upon tise outer lines of rcllers, and secured to the central or guide rail by flanged rollers. The driving-wheels of the locomotive are horizontal, in paire, and bear on opposite sides of the double-headed guide-rail. They may be of about 18 ioches diameter, and are fastened on the lower ends of vertical shafts, to the upper ends of which the steam-power is applied by direct attachment. Adjustable pressure, for tractive adhesion of the driving-whecls to the guide-rail, is obtained by a spring-cushioned screw or eccentric rolling pressure, at the control of the engineman. This is similar to apparatus for a like purpose used on the middle-rail railray systum, devised and applied in America nearly thiriyfive yeas aso by SIr. G. E. Sellers, and recently in wso on the Mont Cenis railuay.

The roll-way car-brakes are arranged to act directly on opposite sides of the guide-rail, and they may be made on any operating principle now approved by railway usage. At road crossings of the roll-way a section of the guide-rail is left out, and the crossing space between adjacent pairs of the wayrollers is open and anobstructed by any part of the superstructure. This is made practicsble by providing fianges on two or three pairs of the way-rollers on cach side of the crossing. The flanged rollers guide the car-runners in strajght lines over the crossing, on the further side of which the drivin $5^{-w h e c l s}$ and guide-rullers again come into position on the opposite sides of the guide-rail. In this way obsiously the crossing can be made at any desired height above the intersecting road, be it of whatever class, a desideratum which is !
not practicable with railways, asido from the cost and wear of crossing-ralls in tho latter.

For switching this new stylo of cars and locomotives, the iuventor has a section of guide-rail on the line, which, being pivoted at one end, is swung outward at the opposite cud, to mect in line with an outside section of bwiteh guide-ral which is swung inwardly, both moving simultancotsly, by mutual conncetion to the same switch-lever. Pairs of wayrollers are - 30 placed to form the switch or turn-out line, upon which the car-runners are directed, by the guide-wheels of the train bearing agninst the switch guide-rail In this way all costly, destructible apparatus like a milway switch-frog is avoided.

The timber-plant for supporting each pair of way-rollers may consist of two common railrosd-ties, laid side by side across the line, and resting on three short sleapers of like material, sunk below the surface of the ground. To this the guide-rail and way-rollers are fastened by long, stron: lagscrews. Otherwise, three pile-posts of length and size to carry tine grade over moderate undulatíons may de driven duep velow frost, and two transverse connecting cap.timbers, on opposite sides of the pile-heads, serve for the attachment of the gaide rail and of the journal-boxes of the rollers. The roll way can thus be carried above the gene al surface, unobstructed by deep snow on the occurrence ofr inundations in valliys. Farthermore, in this mode of maki ug the roaiway, it is unnecessary to move the ground for grading, eave in places requiring deep culting or embankuent. Tho economy of cost can be increased by using steam-power machinery to drive and dress the heads of the pile-posts, for fitting on the cap-pieces, the a!paratus being carried on the structure, which is made as it progr:8ses.

Stecp grades ars to be overcome by having stationary auxiliary steam-power, by connecting on the same shatt a pair of was-rollers, and this is repeated at intervals of three or five hundred fect on the line of ascent. On one extended eud of cach sluaft a simple form of rotary engine is attached, to operato which steara is supplied by a protected steam-pipe underground along the line, connected with stationsry boilers suitably located. For this uso refersible, reactory engine: on the Parker-mill rotary plan, are preferablo for their simplicity and chespness. The weight of the: train resting on the rollers affurds adhesion to the runners, and the atiached rotary engine causes the connected rellers th revolvo and yropel the train. Arrangements are provided for the automatic admission of steam to cach rotary successively on the approach of the traio, and also to shut off steam as the rear end of the train passes over. For undenground and nlevated lines of transit the system is especially urged for its cheapness and security.
The claim is set up in its behalf thit the cost of constructing the roll.way is from one.half to two.thirds less than the ordinary railway, while the cost of equipment is proportion. ately smaller. The following are the inventor's comparstive estimates of roll-way superstructures:-32 railroad ios, Sl $40 \mathrm{c} ; 42$ fect 4 by 8 inches pinc scantling, 6 it c.; lif feet onk, 4 by 5 inches, 42 c ; 160 pounds iron guide.rail, $\$ 720 \mathrm{c} . ; 18$ pounds bolts and lag-8erews at 8 c., S1 34 c.; 4 pounds spikes at $5 \mathrm{c} ., 20 \mathrm{c}$.; 1 pair way-rollers, $\$ 4 ; 1$ day labour. $\$ 250 \mathrm{c}$. ; cost per mile, $\$ 1783 \mathrm{c} . \times 330$, or $\$ 5,88390 \mathrm{c}$.

When the superstructure is made on short pile-posts, as previously described, the cost of materials dous not excecd that on ties, given in the column above, while the estimated expense f r labour on track-work and grading is less. The following is a comparison of cost per inile of sijerstructure, including ties on roll-ways and railways :-
Railway, standard 4 fect 8 t iuch gauge, Sll,735; Roll-was, 5 feet gauge, $\$ 5,883.90 c$. ; ratio, as 1 to 0.5 . Cost of frcighe trains of 200 tons load capasity :- Inailway, 20 box cars, $\$ 13,-$ 700 ; engine $\$ 12,000$.- $\$ 35,700$; roll-way, 13 box cars, $\$ 6,500$ cugine, $\$ 5,000$.- $\$ 11,500$; ratio, as 1 to $0 \cdot 44$ dols. D:ad weights of trains of 200 tons lond capacity : - Mailway, 20 cars, reight 190 toas, 1 engine and tender, 35 tons, 225 tons; roll-way, 13 catr, weight 91 tons, 1 engine, 15 tons, 106 cons; ratio, as 1 to $0 \cdot 47$. Resistance of landed trains at 30 miles an hour, on level : - Railmay, $225+200435$ tons, 13 lb . coefficicnt per ton, $5,525 \mathrm{lb}$.; roll-way, $106+200-306$ tons 7 lb . estimated per ton, $2,149 \mathrm{lb}$, ratio, as 1 to 0.38 . Starting aesistance of loaded trains on level way : Railway is 425 tons, 18 lb . coefficitnt of starting $R, 7,65016$.; roll-way is 306 tons, 6 lb . coefficient of starting $\mathrm{B}_{2} 1,83 \mathrm{flb}$, ratio, as 1 to 0.24.

