SIMILAR TRIANGLES.

5. The result reached in the preceding article may be demonstrated more generally as follows:

Let ABC, $A_1B_1C_1$ be similar triangles, and let them be placed so that AB rests on A_1B_1 , and AC on A_1C_1 , as in the figure. Then BC is parallel to B_1C_1 . Suppose AB and A_1B_1 commensnrable, and let AB contain *n* units, and A_1B_1 contain n_1 units. Suppose

 A_1B_1 divided into its units, and through the points of division draw lines parallel to BC or B_1C_1 . Evidently the divisions of A_1C_1 are all equal to one another, though not necessarily equal to those of A_1B_1 . Then also AC contains *n* parts equal to AE, as AB contains *n* parts equal to AD; and A_1C_1 contains n_1 parts equal to AE, as A_1B_1 contains n_1 parts equal to AD. Hence

$$\frac{\mathbf{AB}}{\mathbf{A}_1\mathbf{B}_1} = \frac{n}{n_1} = \frac{\mathbf{AC}}{\mathbf{A}_1\mathbf{C}_1}$$

In like manner the proportionality of the sides about the other equal angles may be shown.

6. On the other hand, if the lengths of the sides of one triangle may be obtained from the lengths of the sides of another by multiplying or dividing each by the same number; that is, if the sides of two triangles, taken in order, are proportional, what relation exists between the angles of the two triangles?