Let $\mathbf{Q}$ be the mean position of the pole of figare of the Earth, and let as assume that the aotual polo $\mathbf{P}$ revolves aronnd it in a radius $a$, and in a period of one year. Let $\mathbf{R}$ be the position of the pole of rotation at any time. Then, at each moment, $\mathbf{R}$ is revolving around the fixed position $P$ with a uniform motion, which, if continned, would cause it to complete a revolution in 427 days. Let us put
$n$, the mean motion of the radius $P Q$;
$\mu$, the mean motion of R aronnd the position of P ;
$x, y$, the rectangular co-ordinates of $R$ refurred to $Q$ as an origin. The law of rotation then gives the equations

$$
\begin{aligned}
& \frac{d x}{d t}=-\mu y+a \mu \sin (n t+c) \\
& \frac{d y}{d t}-\mu x-a \mu \cos (n t+c) .
\end{aligned}
$$

The integration of these equations gives

$$
\begin{aligned}
& x=\alpha \cos \mu t-\beta \sin \mu t-\frac{a \mu}{n-\mu} \cos (n t+c) \\
& y=a \sin \mu t+\beta \cos \mu t-\frac{a \mu}{n-\mu} \sin (n t+0),
\end{aligned}
$$

$a$ and $\beta$ being arbitrary constants.
Sabstituting for $\mu$ and $n$ their numerical -nlues, we have, approximately,

$$
\begin{aligned}
& x=\alpha \cos \mu t-\beta \sin \mu t+6 a \cos (n t+c) \\
& y=\alpha \sin \mu t+\beta \cos \mu t+6 a \sin (n t+c) .
\end{aligned}
$$

Such a rotation as we bave supposed, around a circle of $0^{\prime \prime} \cdot 05$ in radius, would suffice to produce anomalies as large as those actually observed.

If the winters in Siberia and in North America ocourred at opposite seasons, we should have no difficulty in accepting the sufficiency of annual falls of snow to account for the anomaly. Bat, under the actual circamstances, we mast await the resalts of farther investigations into the whole subject.

