

CONTENTS.

INVENTIONS PATENTED.

No. 9673 . Improvements on Car Replacers.

 (Perfectionnements aux enrailleurs des wagons.)David Russell, London, England, 18th February, 1:79, for 5 years.
Claim.-A car replacer made of tapered channel iron, "Bell Mouth thaped, with sides splayed or bevelled back and rounded inside about three nohes deep, with solid lugs $\mathrm{B}_{\mathrm{I}} \mathrm{Cr}$ to clip rail of track, and at the same time to have a solid bearing bo'h on bead and flange of rail at narrow end; also the mechanical arrangement of a support D^{r}. to rest on cross ties, in addition to baving wide ond supported by another cross tie and fized by solid atuds E when in use.

No. 9674 . Improvements on Bed Slat Couplers.

(Perfectionnements aux attache-barres des lits.)
Lares J. A. Roswall, Clarence, Mo., U. S., 18th February, 1879, for 5 years, Claim.-The combination, with the side rails of a bedstead and the slat. of the hooked latch D pivoted in a plate or frame E secured to the slat, and the frame F secured to the rail and provided with the pivoted bottom I.

No. 9675 . Improvements on Corsets.

 (Perfectionnements aux corsects.)Electa A. Waterhouse, Chatham, Ont., 18th February, 1879, for 5 years.
Claim.-In an abdominal or ordinary corset, the front lacings A A, side D_{D} factened direct over the hips B B, the cords C C and the opening flaps D D fastened with buttons $a \boldsymbol{a}$ immediately over the breasts.

No. 9676 . Improvements on Grain Binders.

(Perfectionnements aux lieuses à grain.)
$J_{0 h n}$ H. Gordon, Roehester, N. Y., U. S., 18th February 1879, for 5 years.
Claim.-1st. The binder frame E F sustained, at both top and bottom, harv the two bars $C D$ of the harvester frame ; 2nd. In combination with the connenter having the elevating apron or conveyor \mathbf{B}, the binder frame $\mathbf{E} \mathbf{F}$ ond ard of the conveyor; 3rd. In combination with a harvester provided with a rain elevator B, a binding machine having an overhanging arm F susiained at its upper end by stays or braces b conneeting with the harvester frame aqpoint above the delivery end of the elevator; 4th. In a grain binding lajnine, an overhanging arm F to sustain the binder arm held and susbaned at its upper end by braces b; 5th. The binder frame E F, having its aisd or provided with arms a engaging upon the harvester frame, and its standtrack or racket provided with the braces b having rollers c mounted on a
a a on the harvester frame; 6 th. The binder frame, consisting of a metal base frame E adapted to sustain the twisting devices Q R RISI, and comerhanging arm F mounted rigidly upon the base frame; 7th, The combination of the sliding binder frame E F and the sliding deflectors I, airrained independently of each other, with the shifting mechanism $f g h i J i$ atranged to move them simaltaneously; 8th. In a grain binding machine.
the oombination of a binder frame E F and grain deflectors I. mounted on *eparate independant supporta, and shifting gechanism $f g h i J l$ connected sllding both the frame and deflector, so as to move them together; 9th. The Bliding binder frame, provided with the rack bar F, in combination with the (Withinion g, having its shaft h extending upward and provided with a crank the rein reach of the driver; 10th. In combination with the fixed pinion g, movack bar f jointed to the binder frame $F_{\text {; }}$; 11th. In combination with the
adapted to take up the slack wire as the binder arm is raised or retracted In a grain binding tension of the wire during the binding operation; 12 th . In a grain binding machine, a spring device T to take up the slack wire ad. tension or strain of the wire upon the graiu; 13th. In a grain binding ma. chine, a binding or wire carrying arm Liand a twisting mechanism $Q_{R_{r}} \mathbb{S}_{1}$, in combination with an adjustable driving mechanism connecting the tiro and permitting the movement of the one to be quickened or retarded in re. ling the the other; 14th. In combination with the driving chain n control Q RI movement of the binder arm L in relation to the twisting meohanirm rated disk w, on the binder arm shaft O and the tightening nut ; 15th. A grain binder or wire carrying arm L and twisting mechavism Q Ri Sx connected with each other through the medium of an adjustable clutch w, so that the arm may be moved forward or back ward in its course of movement; 16th. In a grain binding machine having a horizontal table or receiver K, an intermittently acting arm or kicker W to ensure the delivery of the bound bundles and prevent them from clinging to each other; 17th. The reciprocating rod or arm W arranged to slide outward beyond the grain table or receiver; 18th. A twister head Q. having an upper peripheral hook a^{x} and a lower hook or shoulder a^{2} slightly in rear of the upper one; 19th. The twister head Q, having the upper hook as and the lower shoulder or hook $a^{2} ; 20$ th. A rotary twister bead having a long npper hook a_{t} and a short
lower ho k or shoulder $a_{2} ; 21$ at. In combination lower ho k or shoulder a_{2}; 21st. In combination with the throat plate Y and the sliding jaw Rr, the binder arm L having a projection or rib on its side to force the wire over within reach of the jaw; 22nd. The cam wheel P, constructed and arranged to operate both wire clamping jaws Ri Si and the twister head Q, by means of intermediate mechinism ; 23rd. In com bination with the single cam wheel P, having eccentric or cam faces, both above and below the levers hi it ki mx, arranged to operate the two jaws RI St, the twister Q and the kicker or delivery arm W; 24th. In combination
arm R, mounted thereon, and a fixed guide S to control the movement of $\operatorname{arm} R$, mounted thereon, and a fixed guide S to control the movement of
the compression: 25 th. In combination with the two guides N and the crank M, the binder and compression arms $L R$; 26th. In a grain binding machine, the combiration of a driving crank M, a fixed slotted guide N and a binder arm L, mounted directly on the crank M and arranged to slide in the guide ; 27th. In a grain binding machine, the combination of a rotating driving crank M, a binder arm L, monnted at or near its middle is contrulled a fixed bent guide N by which the movement of the binder arm is controlled and ite nose caused to travel in a straight line, driving the whole or the greater part of its back ward movement; 28th. The combination, in a grain biuder, of the table K, the fixed overhanging standard F provided with the rigid guide arm N S, the crank M, baving its shaft O mounted in the standard F, and the binder arm L sustained and carried by the crank aud guide arm 29th. The combination of the rotating crank M, the binder arm L, mounted thereon, and a fixed elongated guide N having the end of the arm, arranged to slide, to and fro, therein or thereon, the distance between the crank pin and the bearing of the arm on the guide remaining the same during the entire movement of the arm; 30th. In a grain binding machine, the combination of a rotatiog driving crank M, a fixed sinuous guide N and an arm L adapted and arranged to carry the binding wire around the grain mounted directly on the crank M and controlled in its movement
by the guide N. No. 9677

Improvements on Silk Cleaning
 Machines. (Perfectionnements aux machines a nettoyer la soie.)

Avah N. Belding (Assignee of Eliaha J. Martin), Rockville, Ot., U. S., 18th February, 1879, for 5 years.
Claim.-1st. The combination of a series of cleaning spindles $\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$ with the tension roller E and the drawing roller F; 2nd. The combination of the drawing roller F , the winding bobbin G and the friction pulley I with a pulley J upon the main shaft, constructed and arranged so that the circumference of the bobbin tevds to ran faster than the drawing roller to keep the thread tikht: 3rd. The series of stationary spindles $\mathrm{Cr}^{2} \mathrm{C}^{2} \mathrm{C}_{3} \mathrm{C}_{4}$, in combination with rollers E and F, bobbin G and frtation pulley I for giving motion to a running tirread passing around the spindlen for the purpose of cleaning it; 4 th. The trough K and oiling wire L within the box B for oiling the bearings of the spindles while in motion; 5th. A spindle for cleaning silk or other threads composed of a conical or ourved part a and a cylindri-
cal part b.

