ARERMBHETIC.

(Continued.)
The next series of questions might bo on reducing different denominations to some common lower denomination, and lower denominations to ono higher deno,nination. 1st Examplo. Reduce 49 acres 28 p. 10 yds. 8 ft . and 112 inches to inches, and prove each step of every result.

Proof.
144) 308471296
9)2142161 rc. 112

40)7868 re. 10
4)196 re. 28

49 re. $0 \therefore$
In. $308471296=49 \mathrm{a} .28 \mathrm{p} .10 \mathrm{~g} .8 \mathrm{f} .112 \mathrm{in}$.
Otherwise, by reducing each denomination to inches, and multiplying it by the number of inches to which it is equal, thus-

$6272640=$ inches in 1 acre. 49 acres.	$39204=$ inches in 1 pole. 28 poles.
56453760	313632
25090560	78408
$307359360=$ inches in 49 acres.	1097712 = inches in 28 poles.
$1296=$ inches in 1 yard.	$144=$ inches in 1 foot. 8
$12960=$ inches in 10 yards.	$1152=$ inches in 8 feet.

Totals.

$307359360=$ indhes in 49 acres. 1097712 =inches in 28 poles. $12960=$ inohes in 10 yards. $1152=$ inches in 8 feet. $112=$ inches
$308471296=$ inches in 49 acres. 28 pol. 10 yds .8 ft .112 in. 2nd. Example. Reduco 13829 yards 5288 poles and 722 roods to successivo higher denominations: the highest acresreducing them first to inches.

$$
\begin{aligned}
& 5288 \times 39204=207920752 " \text { " }=330080 \\
& 722 \times 1568160=1132211520 \quad \text { " }=180 \quad 2 \quad 0 \quad 0 \\
& 1357444656 \text { inches }=216 \quad 1 \quad 25 \quad 48
\end{aligned}
$$

The illustrations given of the three preceding Tables, with drill-questions, should be quite sufficient to make pupils understand the principles of reduction, and their various applications in processes and calculations. But to make them expert in applying them, they should bo subjected to frequent review-drills. In our best schools, some subject, or part of a subject, is daily under review. Repetitions and reviews aro indispensable in working overything taught into the soholar's mind. Without these, how little of teaching is retained! and of the littlo retained how las is its hold on the memory ! and bow ill-prepared must the scholar bo for examinatory drilling! Without these, how greatly is the teacher's labour increassd, and small to the papil must the amount. of knowledge of any subject be! I strongly recommend to every teacher systematio reviewing.

Reviowing.

Every lesson has its parts; and these parts have their natural teaching-sequence. The teacher's duty is to consider well which of these should first be taken up-which should bo his starting point; and that should be tho one with which his pupils are most familiar. On it review till you are satisfied that their ideas on it are clear and correct. Consider, from the nature of the subject, which part should bo neat presented to them; and for reviewing on which, the first would bcst prepare them. Thus take up cach part of the lesson, and each part of a part-passing on from what they lenow to what they lnow less-always taking care that the parts of the lesson have that arrangement which is most suited to the subject.

I have said that cvery subject has its parts, and sub-parts; and skilfully to teach cach the most suitablo sequenco is supposed, by which the most clementary thing- the casiest for children to comprehend - that which admits of the plainest, the clearest, the most open to the mind, comes first, and first receives attention. And the clearer this elementary part is made to them, and the more it is worked into their understanding, and they, by repetitions and illustrations, master it, the better prepared are they successively to proceed from part to part. And this is much more than passing from the lenown to the undenown. It is advancing from the clearly understood part of a subject, to the next wcil-brought-to-vico succeeding part.

No principle, no part of a subjeot can be clearly illustrated without bringing to view and partly unfolding the natarally succeeding principle or part. In arithmetic, especially in the fandamental rules, as many principles as possible shonld, in training, be combined, and in such a way as to make the one throw light on the other. All arithmetical principles have a depending connection which should be preserved in tewohing. Adding involves the principle of subtracting, multiplying that of dividing; and the four should, with proper gradation, be taught together.

Join Bejor, Inspector of Schools.

