SLEMENS' STEAM MOTOR.

Mr. Friedrich Siemens, of Dresden, has recently designod two motors one of which-the caloric-wo have already described. The second is a steam motor equally simple and ingenious. It consists of a casing of sheot iron A, Fig. 1, which is cylindrical at one ond and pear-shaped at the other. The whole is maintained in an obliquo position by means of an iron support $b b$. The inner portion A is freo to rovolyo round its axis of motion $l l$, whilo the exterior B is stationary ; d is a second casing surruanding the lower projection of it, and c a condenser. Around the interiur of A a helix, als \jmath of sheet iron, is wound so as to present to the cye the appearance of a series of interplaced funnels. The inner surface of B is lined with fireclay, as in oldinary furnaces. The condenser consists of a pipe of convenient diameter encircling part of the motor a sufficient number of times. One ead communicates with the upper portion of A, and the other with a vessel oi water. The space \bar{h} between A and its second casing d may be called the boiler of this apparatus; it is filled with water by means of a small opening in the superior part of A. A Bunsen burner placed beneath supplies the heat, which converts the water into steam. When the steam is generated, it passes through circular orifices perforated in the under surface of A, and rises in the interior of the motor. The force with which it impinges upon the sides of the helical sheets is at first insignificant, but it gradually increases with the continued gencration, and consequent pressure of steam, so as to overcome the incria of the motor, and to impart to it a comparativelv rapid movement. When the steam is circulating through the upper part of A, it enters the condenser, and is converted into water, which descends and feeds the boller. The products of combustion escape through a flue inserted in the outward fixed casing, and which cummunicates with the cylindrical space B. 'lo obtain a motive power of 16 lb . it 18 necessary to increase the supply of heat, and for this purpose a beries of Bunsen burners is employed. The mcvement is transmitted by means of the shaft h, which is connected witi the axis of the motor cither by bevel wheels or, in case of easy work, by a spring y.
When once rotating, this motor requires but very little attention. As both water and steam are confined within the revolving casing, and as there is no communication whatever between the interior and the caterior, thero is but little friction, and therefore a considerable gain of power Instead of a safety valve, the inventor has adopted a small plug of fusible metal, which is inserted in the upper part of A. This safety plug is also used as a hermetical stopper f.r the vater apeiture. The only object attained by this twofold office is greater simplicity in the general mechanism.

The chicf difficulty in the construction of this motor is to prevent the circulation of the water through the spisal spaces s, and approximately to maintain the iucrizontal level of the water, notwithstanding the movement of rotation. Of course absolute horizontality could not be preserved on account of the centrifugal force caused by the rototary motion, for it may casily be seen from the figures that the water revolves with the cylinder A. This inconvenience has been considerably diminished by making the spirals present oxtensive conical surfaces. This disposition affords a freu downward passage to the water, and permits only the steam to circulato through the helices.

When the motor is constructed for maximum power, the condenser is suppressed, and a funnel-shaped vessel, providing the water supply, is fitted into the upper part of A.

Mr. Siemens thinks that other fluids than water 2 ay be advantagcously used in his motor. He specially recommends oil and mercury. The latter would give moro power than water on account of its greater density and lesser specific and latent heats.

The principal advantages of this invention are the direct action of the stcam, a simple mode of condensation, utilisation of the full expansive force of the steam, and a gain of power corresponding to a great diminution of friction.

Like the caloric, this motor is only the realisation of a scientific idea. It is a germ which time perhaps may develop and cause to fructify.

Bossia now has more than ten thousand miles of railroad, which has grown from only eight hundred and twenty-nine miles in 1857.

PRINCIPLES OF SHOP MANIPULATION FOR EN. GINEERING APPRENTTCES.*

By Jonn Riomards, M.l.

(Continued from page 74, vol 3.)
misd power.
Wind power, aside from the objection of uncertainty as irregularity, is the cheapest source of puwer. Steam nathine ry, besides costing a large sum as an investment, is cuntur. ally deteriorating in value, consumes fuel and requires abilla attention. Water power also requires a large investmea greater in many cases than steam porser, and in most placa the plant is in danger of destruction by freshets; but wide power is cheap in every sense, except that it is uncelatio fa constancy except in special localities, and these, as it happens, are for the most part distant from other olements of thacuan. turing industry.
The operation of wind wheels is so simple and 80 generally understood, that no reference to mechaniom need be nadubter
The force of the wind, moving in right lines, is easuly i_{r} plicd to producing rotary mition, the difference from wast power being mainly in the weakness of the wiod currento as the greater area of the uurfaces required to act upon. Turbes wind whecls have been constructed very mach the samu as is. bine water wheels.
In speaking of wind yower, the propositions about heat mes not be forgoten, in fac: the apprentice should so stheve bia mibd and habits of this ling that, whenever the subyect if power is to be considereu in any way, he will at once traceva the connexion with heat.

We have seen how heat is almost directly utilise by te steam engine, and how the effects of heat are utilised by wai wheels, and the same connesion will be found with sux Wheels or wind power, becatiso currents of air are due W changes of temperature, and the connexion between the kex that produces such air currents and their applecation as pora is no more intricate than in the case of water power.

machinery for transmitting and dismmeting fowh.a.

To construe the term, transmission of puiver, in a cntal sonse, it should, whon applied to machinery, include nearls ${ }^{\text {d }}$ that has motion; for, with the exception of the last morem or where the power passes off and is expended upon the rait to be perfurmed, all machinery, of whatever kind, can bs io garded as machinery of transmission. Custom has, howerg confined the use of the term to such devices as are cmploge to convey power from one place to another, without incleders tbe organised machinery through which power is applied is mediately to the performance of work.
Power is transmitted by means of shafts, belte, fnctue whecls, gearine, and in some sases by water or air, as the cos ditions of the work may require. Sometimes such madnaet is employed as the conditions do not require, because theres perhaps, nothing of equal importance connected with a chanical engineering about which there exists so great a dire: sity of opinion, or in which there is a greater diversity of pri tice than in devices for transmitting motion.
I do not refer to questions of mechanical construction, $:$ though the remark is equally true if applied in this sense: 6o to the kind of devices that are bestin special cases.

Shafts for transmitting power.

There is no use in entering upon explanations of what th learner has before his eyes. He sees ,hafts wherever there machinery; he may also see the extent to which they are te ployed to transmit power, and the usual manner of arrangzi them; he can read in various text booh of the exact data determining the amount of torsional strat. that slafts dy given diameter will bear; that their capacity to esist toriosi strain is as the cube of the diameter, ahd that $\tau_{1} e$ deflection from transverso strains is so many degrees, with $n \cdot$ ng otbs matters that are highly useful and proper to know. Inm thercfore, not devote any space to these points here, but tre of gome of the more obscure conditions that pertain to shat

[^0]
[^0]: - This, and tho succooding articlos undor tho samo titlo, rere ishod simultsncously in the Journal of the Franklin Instituk, Ptir dolphia and in Enoincering.

