1. Limestone with crystals of dolomite and a few fragments of Eozoon.

Fine-grained limestone with granules of serpentine—the latter filling the chamberlets of fragments of Eozoon and small globigerine Foraminifera. lar

ab

vu

me

lin

ha

th

881

nu

rei

the

the

8

lay

in

alt

int

alt

Th

su

801

of

Oc

pa

WE

an

the

sh

the

rec

ne

spe

for

Te:

wl

cu

na

tit

wł

ve

po na

die

ace

- Limestone with dolomite and including a thin layer of serpentine as above.
 Limestone and dolomite with grains of serpentine and fragments of supplemental skeleton of Eozoon.
- Crystallized dolomite, holding a few fragments of Eozoon in the state of calcite.
- 6. Limestone with disseminated serpentine as above, chamberlets of Eozoon and fragments of its supplemental skeleton, also small groups of chamberlets, perhaps globigerine Foraminitera.

In other specimens a like thickness of rock presented a mass of fragments of supplemental skeleton with the canals injected with

The chrysotile veins, which are sometimes an inch or more in thickness, but branch off into the most minute fibres, are evidently altogether subsequent in origin to the bedded limestone and serpentine. They are undoubtedly of aqueous origin, and in their mode of occurrence strongly resemble the veins of fibrous gypsum penetrating the Lower Carboniferous marks of Nova Scotia. They cross the bedding in all directions, and pass through the structure of Eozoon, though sometimes running parallel to its laminæ for short distances. They must have been introduced after the Eozoon was

mineralized, and have evidently no connexion with its structure.

In the diagram (Pl. X. fig. 2) I have attempted to represent this relation; and I have no hesitation in stating that the assertion that these chrysotile veins are identical with or similar to the proper wall of Eozoon either in structure or distribution, is wholly without foundation, other than that which may arise from confounding dissimilar structures accidentally associated with each other.

Some slickensided joints lined with a lamellar and fibrous serpentine traverse the beds, and, as the chrysotile veins sometimes terminate in them, may be older than the latter. These also were observed to cross the masses of *Eozoon*.

Few disseminated minerals, other than those already mentioned, were observed in the *Eozoon* limestone. A few detached crystals of mica, pyroxene, and pyrite were found in the fragmental layers, and also a few rounded particles of quartz, probably grains of sand.

The perfect examples of *Eozoon*, at least those rendered evident by mineralization with serpentine, are confined to certain bands of limestone, and notably to one band—that originally opened by Mr. Lowe. In this bed the fossil occurs in patches of various sizes, some of them two feet or more in diameter, and bent or folded by the contortions of the strata; others are much smaller, down to a few inches. On the weathered surfaces the specimens mineralized with serpentine project, and exhibit their lamination in great perfection, resembling very closely the silicified *Stromatoporæ* of the Corniferous Limestone.

None of the specimens of *Eozoon* is of any great vertical thickness. The lower laminæ are generally the best developed and with the thickest supplemental or intermediate skeleton. The upper