lation, as goodly a number of eacellent practical men as teachers, organizurs, and adminisirators, in whool matters, as, probably, any othe country has, within a like period, produced. In edu. cational literature, however, we have had to draw largely from older countries; but we are growing in this direction also, and ere long we may expect to see the works of several of our educationists occupy the position of recognized standarts.

Mr. Hughes, inspector of public schools in Toronto, and Sormerly editor of the Schoot. Jetrasal, is acquiring an international reputation as an educator. A short time ago, his works on teaching were adopted in Iowa and other States as books of reference for teachers, and in two or three of the States they have been reprinted. He has just returned from New York, where he has been lecturing on educational work, under the auspices of one of the institutes of that city.

The following items from current English papers will give our readers a glimpse of the working of the clauses in the New Code retating to Compulsory Attendance and to Payment by Results:-

At the Wandsworth Police Court, last week, Mr. Sheil was engaged for some time in hearing a number of summonses which had been taken out by the two superintendent, for the Lambeth division of the School Board for Lordon and the officer appointed for the school Board at Barnes. In one case, Mr. Wallams, the superintendent, said it was a peculiar one, as the child, who was only nine years of age, was beyond the control of the parents. He wished the magistrate to send the boy to an industrial scinool. Mr. Sheil said he did not like to rolieve the parents, so that their childrea might be maintained by other people. Mr. Whinams stated that the parents had been fined fifteen or sixteen tmes. Mr. Sheal thought a chald nine years old could not be beyond the control of the parents. He inflicted a penalty of 5 s. . In the case of a boy, eleven years of age, it was stated that he had not been to school for six months. Mr. Sheil said a strong man like the father ought to be able to make the boy go to school. The father replied that the boy would not go. If he thrashed him he would not return home. Captain Pasley said the defendant had been fined 5% repeatedly. Mr. Sheil said he would fine him 5%. again. One defendant said his boy had bad feet, and could not wear shoes. Mr. Sheil satd the defendant could send the boy to school without boots. He fined him 2n. orl. In some of the cases the parents pleaded ilhness of the children as an excuse. One mother staied that the children were suffering from measles. Mr. Shel said he could not convict a woman whose children were suffering from measles. He adjourned the summons for inquiry. In another case it was stated that the mother was in her confinement. Mr. Sheil said he could not Junish the husband while his wife was ill. If he fined him, and he did not pay, his goods would be taken for the money. The summons was adjourned.

The grants to Infants' Schools will consist of a fixed grant of $9 *$. per scholar on the average attendance; a merit grant of 2s., 4s., or 6s., according as the school is reported to be fair, good, or excellent; a grant of is. for needlework, and a grant of $6 d$. for singing by ear, or Is. for singing by note. In awarding the merit grant, allowance will be made for special circumstances, and regard will be had to the provision for (1) suitable instruction in the elementary subjects; (2) simple lessons on objects, and on the phenomena of nature and of common life; and (3) appropriate and varied occupations. No nerit grant at all is made unless the Report on the instruction in the elementary subjects is satisfactory.

sthathomatical Dipantment.

MATHEMATICAL TRIPOS.-CAMBIRIDGE, ENGLAND.

 any methods for deriving one case fron. another and for shortening - he work.
2. Resolvo into its component factors
(a) $\left(a^{3}+b^{3}+c^{3}\right) r y z+\left(b^{2} c+c^{7} a+a^{2} b\right)\left(y^{2}=+z^{2} x+x^{4} y\right)$
$+\left(b c^{3}+c a^{2}+a b^{2}\right)\left(y^{2}+z x^{2}+x y^{2}\right)+\left(x^{3}+y^{3}+z^{3}\right) a b c+3 a b c x y z$.
(b) Show also that if $x+y+:+w=0$, then
$w x(w+r)^{2}+y z(w-x)^{x}+w y(w+y)^{2}+z x(w-y)^{2}+w z(w+z)^{2}$ $+x y(w-z)^{2}+4 x y z u=0$.
3. Solve the equations
(a) $\frac{3 . c-2}{5}-\frac{1}{6}\left(x-\frac{1}{6}\right)-\frac{2 x}{51}$,
(b) $x^{3}+y^{3}=b^{3}, \ldots,+a(x+y)=a b$,
(c) $x+y+z=x^{2}+y^{2}+z^{2}=\frac{1}{2}\left(x^{4}+y^{3}+z^{3}\right)=3$
4. Show how to msert any number of geometrical means between two given numbers.

An A. I., a ($\dot{F} . P^{\prime}$. and an $I I . P$. have a and 4 for their first two terms; show that the $(n+2)^{\text {th }}$ terms will be in $G . P$. if

$$
\begin{aligned}
& b^{2 n+2}-a^{2 n+1} \\
& b a^{2}\left(b^{2 n}-a^{2 n}\right)
\end{aligned}=\frac{n+1}{n} .
$$

5. Define a logarithm. Prove that the logarithm of the product or unotient of two quantities is the sum or difference of their logiritums.
If $x_{3}=\log x_{1} x_{2}, x_{4}=\log x_{2} x_{3}, \ldots \ldots . ., x_{n}=\operatorname{lng} x_{n-2 x_{n}-1, x_{1}}$ $=\log x_{n}-1 x_{n}, x_{2}=\log r_{n} c_{1}$, then $x_{1} x_{2} \ldots \ldots . x_{n}=1$.
6. Find the number of Pdrmutations of n things taken r together.

There are n points in a plane, no three of which lie in a straight line. Find how many closed r sided figures can bo formed by joining the points by straight lines.

solutioss.

1. $1_{10}^{1}=0.052633_{5}^{3}, \therefore 3_{10}^{3}=1_{10}^{10} \times 3=15789 \frac{9}{15}$
$\therefore 1_{5}^{1}=0526315089,{ }^{4}$, and $9=4736842105{ }^{5}$
$\therefore \quad \frac{1}{7}=05263157897736842105{ }^{3} \%$. Now as there cannot be more than 18 figures in the circle, and as our remainders begin to recur there we see that tho circulating point should be placed over the last 1.

$$
\text { 2. }(a)
$$

$$
\text { Expression }=\left\lvert\, \begin{aligned}
& \left(a^{3}+b^{3}+c^{3}\right) x y z \\
& +\left(x^{3}+y^{5}+z^{3}\right)(u b c \\
& +3 a b c x z \\
& +\left(g^{2} b+b^{2}+c^{2} a\right)\left(x^{2} y+y^{2} z+z^{2} x\right) \\
& \\
& +\left(a^{2} c+c^{2} b+b^{2} a\right)\left(x^{2} z+z^{2} y+y^{2} \cdot y^{2}\right.
\end{aligned}\right.
$$

$=\left\lvert\, \begin{gathered}a r . a y, a z+b x . b y . b z+c r . c y . c z\end{gathered}\right.$
$+a x . b r . c x+a y . b y . c y+a z . b a . c z$
$|+a \cdot x . b y . c z+a c . b y . c=+a r . b y . c z|$
$+a x . a y . b x+a y . a z . b=+a z . a x . b_{z}$

+ +b.by.cr + by. $b z . c y+h z \cdot b \cdot c_{z}$
$+c x . c y . a x+c y . c z . a y+c z . c x \cdot a$
$1+a x . a z . c z+a z . a y . c z+a y . a x . c y \mid$
$+c x . c z . b \lambda+c a y . b z+c y . c . c . b y \mid$ $+\frac{+}{+} x . b z . a x+b z . b y . a x+b y . b x . a y$

Note. This is a vory fine example of symmetry, and the solution presented shows the advantage of attending carefully to it. The work may be exhibited in a still more simple form by writing
k, l, m
$a x, b y, a z$ $\left.\left\lvert\, \begin{array}{l}k, l, m \\ p, q, r \\ s, t, v \\ f, t\end{array}\right.\right\}$ for $\left\{\begin{array}{l}a x, b y, c z \\ a y, b z, c x \\ a z, b x, c y \text { r }\end{array}\right.$ for themselves.

