specifications will be given to those asking for them till May 18, and will be returned to the architect with the tender.-Building permits have been issued as follows: Four houses for Vve. Drolet, St. Joseph street ; P. Belanger, contractor. Five houses for J. Vaillancourt, 334 St. Joseph street ; Mr. Guichereau, contracior. Seven houses for Mr. Bouchard, 241 Si . Valier ; N. Cauchon, contractor. Nine houses for D. Broomer, ste. Madeline street, 1. Breton, contractor. Nine houses tor 1?. 13. Du: moulin, 7 d'Auteul street : E. Cote, contractor. Eleven houses for Mr. Robitaille, Franklin and Sauvageau streets; F. X. Blouin, tontractor Eles en houses for M1, Baller, St. John street ; Ch. Cote \& Cie, contructors.

FIRES.

The fires of the past werk are as follows: Wuolen factory of Mr E. Camtin, Warwick, Que.; loss $\$ 15,0 \mathrm{~N}$. C.P.R. dining hall, Moosejaw, N.W.I', totally destroyed. -Residence and barn of Rev. 1. Concoran, La Salle, Ont.; loss $\$ 5000$ - J. H. Conner's washing machine factory, Sussex street, Oltawa, Ont.; loss $\$ 8,000$.-Creaser House Hotel, at Dunchurch, Ont.- James Kerr's saw mill, at Havelack, Ont.; loss $\$ 4,00$. - Ausiliary buldeng in connection with the General Husputal at St. Hya. cinthe, Que., destroyed . lows $\$; 0,000$.

CONTRACTS AWARDED.

Brockwhlif, Ont.-Sewer pipe: E. D. Stacey, contractor.
Cokinth, Ont. - Mehodist parsonage: William Andrews, Bayham, contractor.
Bathurst, Ont.-New school building: James Powell, contractor.
Windsor Muls, N.S.-New Bridge: Domanion Bndge Co., cuntractors.
Barrie, Ovt.-Koofing town hall: Doug. las Bros., Toronto, contractors.
Trafaleank, Ont. - Meil.,dis: church: John Somervillc, Milton, contractor.
Gail. ONT. Mil! building for C. Turnbull Co. : Kribs ic Co., Ilespeler, contractors.
Niagara Falls, Ont.- I Ieating Y.M.C.A. building : Janes Smart Mifg. Co., contractors.
harristo:, O.tt.-Mif. George W. Gray has prepared and awarded contracts as follows. Townshit, 1.11 and cnurt house to be built at Lion's Head-stone basement, frame superstructure ; residence for Mr. John Noble. township of Maryborough-brick, hot air and plunnling : residence for Mr. F., B. Dalc, Harriston--to be two storey brick, with hatest improvements.
Toknvio. Ovit. - Tuck pointing, Municipal Buidhas: : Willian Adams, price $\$ 3,400$.Iavement contracts: Asphalt, Wilcox street, St. George to Robert. Constructing $\&$ Paving Co., $\$ 0,494$; asphali, Howard strect, Parliament to Sherkourne, Constructing \& Paving Co., $\$ 9.727$; brick, Elnu avenue and Gilen road, sherthourne to IIill, Dominion Paving \& Constructing Co., $\$ 1,737$; brick, Winchester strect, Parliament io Ontario, Doninion lav. ing \&' Constructing Co., $\$ 3,117,-\mathrm{J}$. Francis Brown, architect, has let the masonry contract of the Firsthrook buidding to Ricthard Chalk. ley, and the carpen'er nork to Young : Co. Other trades aill be let this week.-Heating apparatus. Christian Science church: Janres Smart Mig. Co., cuntractors.

BIDS.

Stratford, Ont.-Bids were received by the city council for the construction of sewers on Cambria and Well strects as follows : Finr Cambria street system-Clark \& Connellv. Toronio, $\$ 5,968.30$; Kennedy \& Wade, Owen Sound, $\$ 7.958 .29$; W. F. Grant is Co., Toronto, $\$ 6,029.52$; E. A. Cawsey, $\$ 5$. . 772.79; Wm. Garson, St. Catharines, \$5., 638.29 ; 1igeon $\$$ Crowley, Scbringuille, $\$ 6$.603.21 ; Wm. Stevenson, Port Huron, $\$ 5$. 425.3_{5}; J. II. MeKnight, Toronto, $\$ 5,930 .-$ 69. Hor Well strect-Clark \& Conncly, Toronto, $\$ 651.88$; Kenneity $\&$ Wade, Owen Sound, $\$ 899.26$; W. F. Grant \& Co., Toronto, $\$ 1,223.53$: E. A. Cawsey, $\$ 678.78$; Wim. Garson, St. Cutharines, $^{2} 749.92$; Pigeon \& Crowley, Scbring ville, $\$ 775.24$; J. H. Mc. Knight, Toronto, \$756.64.

MUNCIPAL DEPARTMENT

THE SAVING EFFECTED BY GOOD ROADS.*

I sat in the commencenent of this address that many millions sterling-1 mught say between one and two hundred millions- mught be expended with great profit on the construction of new roads, and the improvement and proper maintenance of our high roads. It is necessary to substantiate this by reference to fundamental facts. It is an indisputable fact that the number of horses required, or the distance which horses can haul a load is inversely proportional to the road resistance, and it is equally well known that speed and load tiken together decrease nore rapidly than the increase of tractive resistance when that is excessive. On the best surfaces the drauglat will vary from 25 lb . to 30 lb . per ton on the level. On good well-made macadam roads it may be from $j^{3 l \mathrm{lb} .10} 60 \mathrm{lb}$. per ton on the level. On broken stone toad it rises to golb. to toolb.; and on gravel road to 1401b. per ton on the level. On tramrails it varies from $1 ; \mathrm{lb}$. to 40 lb . per ton of load; and on railways from 6 lb . to $1=1 \mathrm{lb}$. per ton. Thus the resistance on good ordinary roads, which might be in use everywhere, is less than one-third that which is met with on common roads everywhere : or, again, it is from three to six times that it need be for the heavier velicles, if wheelways were laid and properly maintained. Hence horses can haul on an asphalt road double the load they can on macadam. or they can contunue at work much longer, or 10 harses will do instead of from 15 to 20. Even on a grooved tramway, with its h:gh resistance compared with a flat rail, two horses will haul from 60 to 100 pe: cent. more load than the same horses can with equal fatugue haul an omnibus on an average maradam road. This sort of difference obtains wili reference to every kind of hanlage done on common roads, and I want to point out that it is not the omnibus or other re'inary vehicle owners who suffer this los it is the public; and the removal of all this would be to the public advantage in lesser fares, lower freights, greater distance carried for same fares, and great saving of time.
An equally or more important question is that of traction resistance on gradients. The increase in the power required to haul a load un a hill is directly proportional to the angle of inclination from the horizontal, and hence on a hill of 1 in 20 . a very common gradient, the hauling pawer jumps from the averase, on a good nacadam road, of, say, 45 lb . per ton to $4 j \mathrm{lb}$. +12 jlb , or a total of 157 lb . instead of 4 Jlb . Bad as this 15 , it is insig. nificari as compared with the pull required on a gradient of I in 10 to 1 in 8 , not at all infrequently met with. On in to the hauling power required becomes $2(x) \mathrm{lb}$. instead of 45 lb ., or no less than stx tumes the power employed on the average nearly level rnad. It is to meet this heavy

Abstrace co the inaugural address of Mr. N. Worby.
Beaument. M.I.C.E., etc., President Socicty of Ingi. neers. Iondon, Ens.
demand for power that two or threc horses have often to be sent with a load which, but for the two or three short lengths of steep hill, could be taken by one horse, and 11 makes 11 necessary to put on a motor vehicle, boiler and'engine power of from 12 h.p. to 16 h.p., where from $3 \mathrm{~h} . \mathrm{p}$. $t 04$ h.p. ought to be sufficient.

There are, it is estimated, in this country over a million horses. I will assume that 500,000 dr ughtht horses are at work. Each of these horses will cost for food alone and stabling about $£ 30$ per year, and I think 1 am entitled to assume, from what I have already pointed out, that at least onethird this number of horses could be dispensed with, or that the existing number of horses might be enabled to effect at least 33 per cent. more transport than they do at the present time. Ignoring for the minute the future increase in road trisfic which must be provided for, this proves that about 170,000 horses less cthan the number now employed would need to be kept and fed. If we take only the cost ol keep of these borses, and for the present say nothing of the reduced destruction of roads which woutd result from the removal of these horses, a saving of $£ 30$ per year pet horse, or a total of $\{5.100$, oo, would be effected. Now this sum capitalized at 3 per cent. is $\{170,000,000$ sterling, and enornous as this sum ap. pears, there is no donbt that such a sum might profitably be invested in the roads of Great Brtan if we consider the advantages to be derived from mechanical traction. It may, however, be reasonably assumed that the road traffic will grow so that even a larger sum than this may represent the possible saving. It is ${ }_{5}$ in fact, the great advantages to be derived from mechanical road transport which will make road improvement desirable, and it is useless to expect euther the proper development of mechanicaltraction, or the possible improvement in the many kinds of ordinary road vehicles, without a corresponding improvement in the roads upon which they are to run. The better the roads, the less destructive will be the vehicles and their tyres; for exactly the same reason as that which explans the wearing of thin light boots on the clean dry pavements of a well-kept city, or perhaps in a drawng room, by the man who finds it necessary to wear hob-nail boots on the rough roads of the country.

From a careful consideration of these points 1 am satisfied that at least one horse in every nine or ten could be saved, and that every draught horse in use could earn from $£ 5$ to $£ 10$ per year more. If, then, the saving of a horse only represents the cost of is keep, or, say, f. 30 per year, and if only 2 s . per week, or £5 per year, be taken as the greater averare earning capacity of each horse, we have a saving per year on 500,000 horses of $11,500,000$ tor reduced horse keep, and of 25 per year on 450,000 horses, or $£ 2$. 250,00 , a lotal saving of $\{3,750,000$ per year. This sum, capitalized at 3 per cent., the rate al which the Government or the country authorties could borrow money, is no less than $£ 133,000,000$. Thus, after basing cvery gain on the lowest estumate, it is obvious that an enormous sum could be usefully employed in the improvement of our national ways of communication, and that if only the most pressing of the work were done, a bundred nillions of national capital, or from $£ 5,000$ to $£ 10,000$ per mile, courd be expended by engineers to very great national advantage.

BELLIIOUSE, DILLON \& CO., so St. Francois Xavierst., Mrontreal

 Sole Afents for the Compagnle Generale des Asphaltes do France (Rock Asphalt).

