which again reduces to
$$1 - (1 - \sin^2 A + \sin^2 B)$$
 or, $\sin^2 A + \sin^2 B$.
The left-hand fraction becomes $\frac{\sin^2 A + \sin^2 B}{\sin^2 A + \sin^2 C}$, which $= \frac{a^2 + b^2}{a^2 + c^2}$ by $5(a)$.

6 (a) Find an expression for the area of an n-sided regular polygon.

Let s be a side of the polygon, θ be the angle at the centre subtended by a side, and p be the apothem. Then $p = {}^{s}/_{2}$ cot ${}^{\theta}/_{2}$, and the area of or e of the triangles included by two radii and a side is $p.{}^{s}/_{2}$.

... The whole area =
$$n \frac{s^2}{4} \cot \frac{\theta}{2} = n \frac{s^2}{4} \cot \frac{\pi}{n}$$

The area might also be found in terms of the perimeter, or of the circumradius, etc.

(b). Show that $2R + 2r = a \cot A + b \cot B + c \cot C$.

Remembering that $a_{2R} = \sin A$, etc., we divide through by 2R and obtain: cos A + cos B + cos C = I + r/R

But cos A + cos B + cos C = 1 + 4 sin A/2. sin A/2. sin A/2 by a known theorem; and A/2 = A/2 = A/2 . etc. And this expression become,

$$1+4\sqrt{\left\{\frac{(s-b)(s-c)}{bc} \cdot \frac{(s-c)(s-a)}{ca} \cdot \frac{(s-a)(s-b)}{ab}\right\}}$$

$$=1+\frac{4\triangle^{2}}{sabc}=1+\frac{4\triangle}{abc} \cdot \frac{\triangle}{s}=1+\frac{r}{R} \quad \text{(i. e. d.)}$$

7. From a station, B, at the base of a mountain, its summit, A, is seen at an elevation of 600; after walking one mile towards the summit up an incline of 300 with the horizon to another station, C, the observer finds the angle BCA to be 135°; find the height of the mountain.

Evidently the elevation of the summit as seen from station C is 75°.

Let h be the height of the mountain, and x be the distance from B to the foot of the perpendicular let fall from the summit.

tan 60°; and going to station C, $h - \sin 30^\circ = (x - \cos 30^\circ)$ And substituting for x, $h - \sin 30^{\circ} = (h \cot 60^{\circ} - \cos 30^{\circ}) \tan 75^{\circ}$; tan 750.

whence
$$h = \frac{\sin 30^{\circ} - \cos 30^{\circ} \cdot \tan 75^{\circ}}{1 - \cot 60^{\circ} \cdot \tan 75^{\circ}}$$

Otherwise as follows: $\langle BAC = 180^{\circ} - (135^{\circ} + 30^{\circ}) = 15^{\circ}$.

Then BA: BC = sin 1350: sin 150

... BA = BC $\cdot \frac{\sin 45^{\circ}}{\sin 15^{\circ}}$. And the height of the mountain is BA $\sin 60^{\circ}$ =

BC .
$$\frac{\sin 45^{\circ} \cdot \sin 60^{\circ}}{\sin 15^{\circ}}$$

Both of these solutions give the same result upon substituting the values of the functions, namely, the height $= \frac{1}{2}(3 + \sqrt{3})$, or 2.366 + miles.

8. (a) Prove that $\log_a \sqrt{m} = \frac{1}{k} \log_a m$, and that $\log_b N = \frac{\log_a N}{\log_b h}$

1st. Let $\alpha^p = m$. Then by definition $p = \log_a m$

And $a^{p/k} = m^{1/k} = {}^{k}/m$ $p/k = \log_a {}^{k}/m$. Whence $1/k \log_a m = \log_a {}^{k}/m$. and Let $b^x = N$. Then x = k. N. Also take logarithms to base a.