

	investment worth	\$4800 00 4283 95	
Het	loss	\$ 516 05	

Algebra.

In factoring trinomials you will notice that if the last sign is + then the signs of the factors are alike, that is each is + or each is -. A look then at the first sign will decide what the signs are; if it is + both are +, if it is - both are -. For instance, to factor $x^2+7x+12$. The last

sign is + then the signs of the factors are either each + or each -. We then look at the first sign; it is +, therefore they are each +. Now what two numbers multiplied will give 12, and added will give 7. The answers are 3 and 4. There-

fore the factors are (x+3)(x+4). But if the last sign is – then the signs of the factors are different, that is, one is + and the other . A look then at the first sign will decide what the signs are; if it is + then the larger number is +, if it is - then the larger number is -

For instance, to factor $x^2 + x - 12$, we see the signs are not alike and that the large number is +. We then ask what number multiplied will give - 12 and added will give +1. The answer is - 3 and +4. The factors then are (x-3)(x+4).

To factor $2x^2 + x - 28$ we factor 2 into 2 and I; we then factor 28 into 7 and 4, then arrange them with signs such that the middle term will become +1. Thus $\frac{2-7}{1+4}$. You see here that by multiplying +1 and -7 and +2 and +4 and adding the result we get +1.

EXERCISE I.

Do not be satisfied until you can read the factors of these at sight.

1.	$72x^2 - 145x + 72.$	11. $I - 100a^6 b^4 c^2$.
	$2 - 3x - 2x^2$.	12. S1p4z ⁶ - 25b ² .
	$7 + 10x + 3x^2$.	13. $p^2q^2 - 64a^4$.
	$20 - 9x - 20x^2$.	14. $a^2b^4c^6 - x^{16}$.
	$4 - 5x - 6x^2$.	15. $36x^{36} - 49a^{14}$.
	$18 - 33x + 5x^2$.	16. 121a ² - 81x ² .
7.	$24 + 37x - 72x^3$.	17. $3 \cdot 1a^4 - 49x^4$.
8.	$x^2y^2 + 23xy - 420$.	$18.49 - 100k^2$.
	$7x^2 - 19 - 6.$	19. $91^4 - 121$.
10.	$14x^2 + 20x - 15$.	20. $16x^{16} - 9y^6$.

EXERCISE II.

Ι.	21 + 3x + 1.	11. $2x^2 + 9x + 4$.
	$5x^{2} + 11x + 2.$	12. $3x^2 + 7x - 6$.
	$2x^2 - x - 1$.	13. $3x^2 + 23x + 14$.
	$3x^2 + 13x - 30$.	14. $2x^2 - 5xy - 3y^2$.
	$4x^2 + x - 14$.	15. $3x^2 + 11x + 6$.
6.	$12x^2 - 23xy + 10y^2$.	16. $6x^2 - 31x + 35$.
	$15x^2 - 77x + 10.$	17. $3x^2 + 41x + 26$.
	$24x^2 - 29xy - 4y^2$.	18. $8x^2 - 38x + 35$.
9	$3 + 11x - 4x^2$.	19. $15x^2 + 224x - 15$.
	$8 + 6x - 5x^2$	20. $12x^2 - 31x - 15$.

EXERCISE III.

It is thought this paper will be found useful for review at this stage of the work.

1. If b=2, c=4, d=6, find the value of $3b + (2c-1)^4 + (3b-(2c-d)^2)^4 - (3b-(2c-d)^2)^2$. 2. Reduce to its simplest form $1 - (1-(-4x)^2)^2$.

+ $\langle 2x - (3 - 5x) \rangle - \langle 2 - (-4 + 5x) \rangle$. 3. Add 9(x²+y²), - 3xy, x² - 7xy+y², Ioxy - $10(x^2 + y^2).$

4. From 4(a-b)+3(x+y), take 3(a-b)-5(x-b)+y).

5. Divide $8a^3 - b^3 + c^3 + 6abc$ by 2a - b + c.

- 6. Factor the following expressions :

 - (a) $2bc+b^2+c^2-a^2$. (b) $(a-b)^2-(c-d)^2$.

7. Find the value of x in the equation $(x-5)^2$ - $(5-x)^2 + 10x(x-2) = (5x-8)(2x-1)$

8. Find the area of an oblong whose sides are respectively 9 feet greater and 6 feet less than those of a square equal to it.

9. Six years hence a boy will be 4 times as old as he was 6 years ago. How old is he?

10. Find 4 consecutive numbers whose sum is 222.

11. Fred and Bob play at marbles. Fred begins with 16 and Bob with 12; after the game Fred has thrice as many as Bob. How many has be won?