THE

school magazine.

DECEMBER, I88o.

HEALTH DEPARTMEN".

Edilor: A. Hamilton, M. A., M. D., Port Hope, Ont.
THE SCHOLAR'S EYE.

IV.
 OVERSIGHTEDNESS.

Optical Analogue to Oversighteduess.
Nature of
Chief Symptoms of \quad do.
Prosnosis of
Percentase of Owersighted Pupils.
Use of Convex Glasses.
Disadvantages and Suffe"ings.

IN last month's Magazine certain optical facts were impressed upon the mind by an experiment there given. Referring, if necessary, to the experiment as there described, the reader will readily understand what follows immediately.

When rays approximately parallel meet a 3 -inch lens they are brought to focus at or just within 3 inches. If the receiving screen be brought to say $23 / 4$ inches, the bright spot is less concentrated. If, by some mechanism, we could so change the form (and so the power) of the lens sufficiently, we could still focus on the screen at the $23 / 4$ inches. If, however, the rays be not
quite parallel, but come from a luminous point a foot or two in front of the lens, the focus, even with a $23 / 4$ inch lens, will not be on the screen, but at a point somewhat behind it, as he rays received by the lens are now diverging. We can still have the focus on the scrcen by either again changing the form of the lens to $21 / 2,21 / 4$, as needed; or, if changing the form of the lens be out of the question, we can do the same by inserting a weak convex lens before the one already there.

The analogue of all this is going on in the oversighted or hypermetropic eye. The depth of the normal eye from front to rear averages 19 inch outside measurement, or about $\frac{{ }^{\circ} 0}{0}$ from cornea to retina or inside measurement. The refracting crystalline lens and its adjuncts are adapted to such a distance. But the oversighted eye is preternaturally short, and so is less than T_{0}° inch the amount which it lacks of being, $\mathrm{T}^{9} 0$ being a measure of the amount of shortsightedness. Now, the lens of the eye can be so changed in form as to bring parallel rays to a focus at a distance less than 70 , say $7 / 8$ inch, by

