tion of personal judgment and experience, and offers the best opportunity for the display of analytical and practical ability on the part of the designer. It is difficult to give specific rules. The following are some of the controlling questions to be considered.

The class of structure, whether temporary or permanent, and the nature of the loading, whether dead or live. If live, then whether the application of the load is accompanied by severe dynamic shocks and pounding of the structure. Whether the assumed loading for calculations is the absolute maximum, rarely to be applied in practice, or a possibility that may frequently take place. Prolonged heavy steady loading, and also alternate tensile and compressive stresses in the same piece, will call for lower averages. Information as to whether the assumed breaking stresses are based on full-size or small-size tests or only on interpolated values, averaged from tests of similar species of timber, is valuable in order to attribute the proper degree of importance to recommended average values. The class of timber to be used and its condition and quality. Finally, the particular kind of strain the stick is to be subjected to, and its position in the structure with regard to its importance and the possible damage that might be caused by its failure. In order to present something definite on this subject, your

In order to present something definite on this subject, your committee presents the accompanying table, showing the average safe allowable working unit stresses for the principal bridge and trestle timbers, prepared to meet the average conditions existing in railroad timber structures, the units being based upon the ultimate breaking unit stresses recommended by your committee and the following factors-of-safety, viz :

Tension, with and across grain	Ten.
Compression, with grain	Five.
Transverse Rupture, Extreme Fibre Stress	Four.
" Modulus of Elasticity	Two.
Shearing, with and across grain	Four.

In conclusion your committee desires to emphasize the importance and great value to the railroad companies of the country of the experimental work on the strength of American timbers being conducted by the Forestry Division of the U. S. Department of Agriculture, and to suggest that the American Association of Railway Superintendents of Bridges and Buildings endorse this view by official action, and lends its aid in every way possible to encourage the vigorous continuance of this series of government tests, which bids fair to become the most reliable and useful work on the subject of strength of American timbers ever undertaken. With additional and reliable information on this subject, far-reaching economies in the designing of timber structures can be introduced, resulting not only in a great pecuniary saving to the railroad companies, but also offering a partial check to the enormous consumption of timber, and the gradual diminution of our structural timber supply.

WALTER G. BERG, Chairman, J. H. CUMMIN, JOHN FOREMAN, H. L. FRY,	Committee.
---	------------

AVERAGE ULTIMATE BREAKING UNIT STRESSES IN POUNDS PER SQUARE INCH.

Recommended by the Committee on "Strength of Bridge and Trestle Timbers."

AMERICAN ASSOCIATION OF RAILWAY SUPERINTENDENTS BRIDGES AND BUILDINGS .--- 5TH ANNUAL CONVENTION, NEW ORLEANS, OCT., 1895.

align the part of the part of the set of the set of		TENSION.		COMPRESSION.			TRANSVERSE RUPTURE.		SHEARING.	
KIND OF TIMBER.	With Grain.	Across Grain,	With End Bearing	Grain. Columns under 19 Diams.	Across Grain.	Extreme Fibre Stress.	Modulus of Elasticity	With Grain.	Across Grain.	
White Oak. White Pine Southern, Long-Leaf or Georgia Yellow Pine Douglas, Oregon and Wash-) Yellow Fir. ington Fir or Pine. Northern or Short Leaf Yellow Pine Red Pine Norway Pine Canadian (Ottawa) White Pine. Canadian (Ottawa) White Pine. Spruce and Eastern Fir. Hemlock Cypress Cedar . Chifernut California Redwood	10,000 7,000 12,000 10,000 9,000 9,000 8,000 10,000 8,000 6,000 8,000 6,000 8,000 6,000 9,000 7,000	2,000 500 600 500 500	7,000 5,500 8,000 6,000 6,000 6,000 6,000 6,000	4,500 3,500 5,000 6,000 4,000 4,000 5,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000	2,000 800 1,400 1,200 1,000 800 800 700 600 700 700 700 900 800	6,000 4,000 7,000 6,500 5,000 5,000 4,000 3,500 5,000 5,000 5,000 5,000	I,100,000 I,000,000 I,700,000 I,200,000 I,200,000 I,200,000 I,200,000 I,200,000 J,200,000 J,000,000 J,000,000 J,000,000	800 400 600 400 350 400 350 400 350	4,000 2 000 5,000 4,000 3,000 2,500 1,500 1,500	

AVERAGE SAFE ALLOWABLE WORKING UNIT STRESSES IN POUNDS PER SQUARE INCH.

Recommended by the Committee on "Strength of Bridge and Trestle Timbers."

AMERICAN ASSOCIATION OF RAILWAY SUPERINTENDENTS BRIDGES AND BUILDINGS .- 5TH ANNUAL CONVENTION, NEW ORLEANS, OCT., 1895.

TENSION.		COMPRESSION.			TRANSVERSE RUPTURE.		SHEARING.	
Across Grain,	With End Bearing.	Grain. Columns under 15 Diams.	Across Grain.	Extreme Fibre Stress.	Modulus of Elasticity	With Grain.	Across Grain.	
Ten.	Five.	Five.	Four.	Six.	Two.	Four.	Four.	
200 50 60 50 50 50	I,400 I,100 I,600 I,200 I,200 I,200 I,200 I,200 I,200	900 700 1,000 1,200 800 800 1,000 1,000 800 800 800 800 800 800 800 800 800	500 200 350 300 200 200 200 150 200 200 200 200 200 200	I,000 700 I,200 I,100 800 I,000 800 700 600 800 800 800 800 800 800	550,000 500,000 850,000 600,000 600,000 600,000 700,000 600,000 450,000 350,000 350,000 250,000	200 100 150 150 150 100 100 100 100 100	I,000 500 I,250 I,000 I,250 I,000 I,250 I,000	
	200 50 60 	200 I,400 50 I,100 60 I,600 I,200 50 I,200 I,200	200 I,400 900 50 I,100 700 60 I,600 I,000 I,200 800 50 I,200 800 50 I,200 800 I,000 50 I,200 800 I,000 50 I,200 800 I,000 50 I,200 800 I,000	200 I,400 900 500 50 I,100 700 200 60 I,600 I,000 350 1,600 I,200 300 50 I,200 800 250 50 I,200 800 200 50 I,200 800 200 I,000 1,000 I,000 50 I,200 800 200 I,000 50 I,200 800 200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	