䚡istrellimpunts.

Finding Wator-A Simple Woll Auger.

The continued prevalence of empty cisterns and dry wolls prompts me to give your readers my experience in water finding, which, nut being patentod, costs them nothing but the perusal.
About fifteen ycars ago I came to Chatsworth, III., then a railroad station with but one house. Tho country was thinly settled, and the scason had been anusually dry. We had but one well at the station, and that scarcely supplied aufficient water for drinking. Water must bo liad, and I had not the remotest sdea how deop I would have to go to find it. All the methods of boring I had ever witncesed wero decidedly too expensivo to suit the condition of my finances, and digging without knowing how deep I would have to go was risking more than I cared to inrest in such a lottery. In this dilemma, I concluded to try a plan of my own. I accordingly made a pod auger that would bore a hole about two inches in diameter. On the upper end of the shank of this auger I made an oye that would receive a half inch hook, then taking several rods of half inch round iron, I shrank hoxigon nuts on them at intervals of about two feet, to prevent my hands from slipping, while pulling the auger up. I then made a handlo about two feet long, that could readily be fastened anywhere on the rods, and with an eye turned on one end of each rod, and a hook on the other, I was prepared to go ta boring.
With this apparatus I bored to a depth of sixty-four feet an one day, when I found a good vein of water. The last three or four fect, however, consumed nearly one-half of this time, as I found a kind of hard yan directly over the water, which wonld not slip on the auger, but adhered to Water, which wonad not slip on the auger, but adhered to
it so tenaceously that I could only bring up an inch or two of it ata time.
I subsequently triod in other placen, bat failed to find pater any nearer the surface of the ground, but I was prepared to go to digging with some degrec of assurance that my labor would not bo thrown away.
Sirce then I have always kept an augur of this kind, and as hundreds of farmers can teatify, it is a rater witch that as hundreds of farmers can testify, blay be reled upon. Any blackmith who knows can toways to make a pod auger can get uparg of this kind at a triting expense, and it will be the most profitable investment, for a small one, that he can possibly make, as it costs but little to keep it in order, and almost any farmer would be willing to pay fifty cents or a dollar for the use of it to find water, before commencing to dig a well.
When boring with an auger of this kund, a man should never stop until he gets as deep as he intends to gn, as surface water may come in and interfere with his work
 to notice how quackly at nses, as a good vem will rise almost instantly, while water that comes up slowly is not worth digging to. While boring, there should always be about sex inches of water kept in the hole, but if too much water is used, it will creato slush, and reader the auger hand to pull out If, while unhooking the rods, one should be acoidentally dropped in the hole, it can be recovered by bending one of the books to one sule, which will cnable it to catch on a corner of the lost rod, and bring it up, or, what is better, a short rod, with the hook bent in this what is better, a short rod, with the hook bent in this
manner, might alwaya accompany the auger, to be used in case of necessity, and thins save bending the rods. Such au accident, however, can oǹly occur through carelessness, as the rods cannat possibly unhook while in the hole.-Cor. Wiestern Rural.

Vegetable Philosophy.

Each seed, bud or young plant is an indivadual living ieing. As it passes through its penods of youth, maturty and reproduction, it must bo fed and nourished to sustain its development. Some of the essential conditions of perfect development are beyond our control, such as the composition of the air and life, the history and physiology of the plants which are subject to the fixed and immutable laws of the Creator. Others can be moditied and controlled by it, such as the porosity, wetness, dryness or composstion of the soll; also the seed, and tho scason, and the mamer of cultivation and harvesting It is to these latter only that the agriculturist can, with adiantage, devote his attention. All plants receive therr nourshment of food through two chamels: First, through their leaves from the atmosphere; secom, through their roots from the soil in which they grow. In general terms the leaves absorb all the carbon (in the form of carbome acul gas) that is found in tho plant, siso part of tho ammonia, but very little, if any, water. On the other hand, the roots
absorb all other elements, of which ars lime, magnesia, potash, soda, chlorine, sulphur, (sulphuric acid), phosalumina, nitrio acid of ammonia, and fow others in minata quantitics. It is evident from the conditiens of the cuse that we cannot modify or improve on nature, by attempting to feed the plant through its leaves. For this nature has abuadantly provided. But the channel or medium of tho roots is ontirely under our control. From 9.10ths to 99-100ths of the bulk and weight of plants come originally from the carbonic acid of the air, and from the water of the soil. Both theso go off an gasses when the plant is burned. The ash or mineral matter left came only from the soil. The ash of wheat (graiu) is only two per cent. of the original, perfectly dry.
Of whoat atraw
of clover hay.
Per cent.
\qquad
Of corn (grain)..
And this rery amall proportion of mineral mattor is al solutely essential to the growth of the plant. You may sprout grain floating on the surface of pure water in a glass or in a bed of pure sand, but it cannot thrivo or grow. But if you add to the water (or sand) all the olements of the ash, as given above, it will rapidly revive, flourish and arrive at maturity in the usual season. If a single important element, however, is omitted, such as magnesia, potash, sulphuric or phosphoric acid, the plant is unable to mature and re-produce itself. This has beon proved. In general terms, then, any application made to the soil, with a view of uncreasing the yold of the crop, may beconsidered a fertilizer.-Dr. A. N. Pratt, before Waskington Unirersity.

A Vermin Trap.

An easily inale and efficient vermin trap will be appreciated by every farmer. A correspondent of the Country Centleman gives the accompanying figure, and oxplams it
thus:-
I make a lox two feet square, four inches doep, and divide it into mine equal parts, as aho:m in the illustration. I put a cover on it with hinges, and make holes as marked;

then put in some chaff and something to entico the mis or mace into the box. Anyone using it will soon have the whole of the mice visiting the establishment. I have taken from onn to thirty-throe at a time is this way. It - $: 11$ be seen that the mice have to pass through three boxes before reaching the centre one, where the bait is placed. It is ly
far the moat effectual way of exterminating mice that I have ever seen tried. When the trox is made on a larger scalo it is good for a rat trap. Mice and rats will often run into the box when disturbed in other places. When ohe wishes to kill the mice in the box, he has only to plug the two holes and carry the box to a clear open phace. It is fun for boys with a dog.

Driving Fence Posts.

A neighbor told me how to make a board fence rapilly and cheaply last year. He and his hired man went to the fied where the fence posts, with ends slightly sharpened, were lying along the line of the proposed fence. One man stood on a platiorm two and a half feet high, and with heavy mallet drove the posts as the other held them un position. Eighty posts were thus put down threo feet deep in one afternoon. The ground was free from large stones, and the time selected was just after frost had left the ground in the spring. The posts were white oals, and did not spht by being driven. Tho ground was so soft that severe pounding was not necessary, and doubtless softer wood might havo been used. The fence stood firmer than whero holes had been dug and tho posts regularly set.
It is possible this method could be adopted on soils where there is somo stone by working a crow bar down to the renuired depth, shoving asido the stones before the post is driven down. Two stakes driven down side by side, with room for rails between, sud wired at wo, make an excellent and cheap temporary fence; and a post driven or set threo feet, with a stake beside and wired to it to hold the rails, make a fenco both cheap and durablo; by driving the stake into the ground twelve to fifteen inches, only one wire will bo needed, and that at or near tho top. Such a fence takes little room, and by using old rails and pieces of rails need cost but little money. It is less hiabld to sag than the orlimary bo
the usual way.-Cor. Nes. Sork Times

How Malt is Made.

The grain is first taken up by an clevator ran by steam, nud is poured into 3 woighing bin, from which it paseon through an automatic arrangement, where the chaff, light heads, dust, etc., are carried off by tho air, after which the good grain passes over a siove, Fhich separatos any other foreign matter which may remain. It is then oarried to the storage room by a convegancor. The grain is now learly for the steeping or soaking tubs in the leasement, where it remans from twenty-four to forty-eight hours, according to the grain and temperature.

After being sufficiently steeped the grain is removed to the different floors by an elcvator, ani spread out 80 as to pive it time to spront beforo being placed in the kilns. It is necessary in the manufacture of malt to have the grain sprout in order that the sugar may be extracted, from which the alcoholic properties aro derived. After the sprouting process the grain is placed in the kilns, which have to be kept at a cortain temperature, and the malt stirred up or turned over several times to prevent its being overheated. It requires from fifteen to sixteen days to convert the barley into malt ready for the manufacture of beer. Baltimore Sun.

Fish-Culture.

Iast month, the American Fishculturist's Aszociation held a meeting, at New York. Many intereating and valuable facts were elicitod during the discussions whick took place. The progress of the art was shown to be most satisfuctory.
Mr. Wilmot, of Newcastle, Ont., who was appointed Canadian delegato to the meoting, read an intoresting collated statement from reports which he had submittea, to the Canadian Legislature on the subjoct of fish culture. He divided his skatement into three parts. First, he, inaisted on the enactment of judicious protoctiva laws; ; then he answered tho question which he said was froquently asked by the scepticel, as to phy fiah should bo. prodiced by artificial moans instcad of allowing them to broed in the natural way; and lastly he pointed out the way in which the artificial process obviated the numerous difficulties whioh beset the natural breeding of fish.
After referring to the general impoitance of pisciculture, he strongly urged the necessity of Legislatares making laws for their protection during certain sessons of the year, especially during the close or spawning' season. The sea fisherics, he said, did not ief quito the ssume protection as thoso inlant. On the subject of artificial and nataral breeding of fish, he took the salmon aran example, pointed out the way in which the spawn was deposited ini" tho natural process, shewed the various ways in which the eg'gs were destroyed, such as failure in impregnation, attackesby fish insects; aquatic birds, \&c., and contended that not more than one per cent ever came to be mature fish. On the other hand, he sheweid that from the care takerr in the
 tected from danger of all kinds, the percentage was moro than seventy-five or eighty per cont.

A Boy Fistorian says :-"Toais is like frogs, but
moro dignity, and won you come to think of at, frogz is more dig

It is statbd by those who say they know, that one pair of rats with their progeny, will produce in three years no leas a number than 646,848 . At this rate of multiplication it wonld seem strange that we do not see more of them but they hide and work in the dark. Brick drains are their chosen haunts. Skirting boards, bricks of fire-places, under the tlooring, and betweeu the rafters, are thoir places ior breeding.
Manufacturr of Superphospratra-The Baltimore Trade Review gives a description of the mannfacture- of superphosphates by Lorents \& Rittler, in that city. They make from 15,000 to 16,000 tons per annum, using bones from South America, and from the Charleston, S. C., Bone Deposits, mixed with sulphuric acid, sulphate and muriate of potash, Stassfurt salts and kannit. These are mixed and dricel by machinery, pulverized and put up in bags for shipment. In the manufacture of their ammoniated superphosphats, they uso large quantities of dricd and finoly pulvericel flesh, obtamed in the large abattoirs of Baltimore and the neighbormg cities.
The Eucalyitus in Califonina. -The city truetene of Sacramento, Califonia, have ordered an expenditure of three huadred dollars in the purchase and setting out of Eucalyptus trees on Tenth and Ω streets in that city. The order was made upon the recemmendation of the Board of Health as an experment to test the power of the tree as a proventive aganst chills and fever. If successful, the trees are to be introduced into Sacramento on a larger scale. If the result be as antreipated there are other sections of the State which will doubtless follow the example of Sacramento. Much has been said about the rapidity of growth of these trecs, but the most extraordinary stete ment yet malo is by a writer in the Niew Age, who avers that there aro Eucalyptur trees in Orange, Los Angelas county, set out only a ycar ago last March, which now measure tweuty-three inches in diameter at tho basa.

