Johnson's Drug Store, corner Kent and Prince Streets

ARTICLES OF THE CALENDAR

-and-

ASTRONOMICAL NCTICES FOR THE YEAR 1893.

On the left-hand page of each month are given the rising and setting of the Sun with the length of the day to the nearest full minute; also the data required for solar observations for time, namely, the Equation of Time (that is, the difference between apparent Sun time and uniform Clock time), which is given for the instant of Apparent Noon and the Sun's Declination at Mean Noon-Greenwich Time. With these two exceptions all the calculations are reduced to the nearest minute of local mean time at Charlottetown. Latitude $46^{\circ} 13^{\prime} 55^{\prime \prime} \mathrm{N}$.; Longitude $63^{\circ} 7^{\prime} 33^{\prime \prime} \mathrm{W}$.; giving 4 hs. 12 mins. 29.5 secs. difference slow on Greenwich.

If required, the Sun's Declination at Greenwich apparent noon may be obtained from the data here given, by multiplying the hourly variation of Declination by the Equation of time for the same day reduced to the decimal of an hour, and applying the result according to the conditions, as under.

DECLINATION INCREASING.	DECLINATION DECREASING.		
Sun slow of clock Add	Sun fast of clock Subtract	Sun slow of clock Subtract	Sun fast of clock Add

Example-To find the Sun's Declination at Greenwich, Apparent Noon, on February 16th, 1893.

Equation of Time, February 16th, $\frac{14^{\prime} 14.94^{\prime \prime}}{60) \frac{14 \cdot 269}{.237^{8}}}$ slow
Sun's Declination S. Mean Noon,
 $\begin{array}{llll}12 & 8^{\prime} & 46.0 & \begin{array}{c}2379 \\ 7134 \\ 4756\end{array} \\ & & & \\ 4750\end{array}$
1.890

Sun's Declination, Apparent Noon, $12^{\circ} 8^{\prime} 33.6^{\prime \prime}$

