ing the sign $\sqrt[3]{}$ before the number, or placing the fraction $\frac{1}{3}$ above the number, a little to the right. Thus $\sqrt[3]{216}$ or $(216)^{\frac{1}{3}}$ denotes the cube root of 216; so that $\sqrt[3]{216}$ or $(216)^{\frac{1}{3}} = 6$.

146. Rule for extracting the Cube Root of a number.

Place a point or dot over the units' place of the given number, and thence over every third figure to the left of that place; and thence also over every third figure to the right, when the number contains decimals, affixing one or two cyphers, when necessary, to make the number of decimal places a multiple of 3; thus dividing the given number into periods. The number of points over the whole numbers and decimals respectively will shew the number of whole numbers and decimals respectively in the cube root.

Find the greatest number whose cube is contained in the first period at the left; this is the first figure in the root, which place in the form of a quotient to the right of the given

number.

Subtract its cube from the first period, and to the remainder bring down, on the right, the second period.

Divide the number thus formed, omitting the two last figures, by 3 times the square of the part of the root already

obtained, and affix the result to the root.

Now calculate the value of 3 times the square of the first figure in the root (which of course has the value of so many tens) + 3 times the product of the two figures in the root + the square of the last figure in the root. Multiply the value thus found by the second figure in the root, and subtract the result from the number formed, as above mentioned, by the first remainder and the second period. If there be more periods to be brought down the operation must be repeated.

Ex. 1. Find the cube root of 15625.

15625(25 $2^3 = 8$ After pointing we 7625 take the first period, or $3 \times 2^2 = 12$ $8 \times (20)^2 = 3 \times 400 = 1200$ 15, and find the great- $3 \times 20 \times 5 = 300$ est number whose cube is contained in it. Since the cube of 2 is 8, and that of 3 is Multiply by 7625 27, it is clear that 2 is the greatest number whose cube is con-