yardstick”, has not been impressive. Researchers have discovered that the
human thought processes are much more complex than originally sur-
mised. Humans make use of a wide range of knowledge in functions such
as pattern-recognition, generalization, learning, and strategy develop-
ment. This knowledge is so wide-ranging that it has still to be fully
catalogued by researchers, and so computers cannot yet come close to
human performance in this area.

Another limitation is that when a computer breaks down, more often than
not it becomes totally useless:

The notion that it will merely be a little sluggish or inaccurate
derives from experience with other kinds of devices where a
worn wheel or axle may indeed degrade performance. When
something goes wrong with a computer, however, it tends to go
berserk, not degrade.

Ornstein challenged the assertion that, even if Star Wars computers broke
down, 95 per cent of incoming missiles would still be intercepted. He
argued that in fact none would be intercepted in the event of a break-
down. Some systems are designed to prevent this sort of total breakdown.
In these systems the effects of errors are somewhat alleviated by isolating
various parts of the program and providing a minimum of restricted
interconnections between the parts. Unfortunately, even these modular
systems cannot be completely protected from breakdown. Furthermore,
computers are notoriously unpredictable in interpreting unanticipated
data. For example, sensors have interpreted the moon rising as an incom-
ing missile. An additional limitation is the personality of the human
operator. Although humans are an integral part of any operating system,
human reactions are frequently ignored by systems designers and super-
seded by military protocol.

Ornstein maintained that the most crucial limitation of computers, how-
ever, arises from the inherent imperfectability of the software. Most of a
computer’s design is contained in the software and when a computer
breaks down this is frequently the source of the problem. While compu-
ters are almost infinitely flexible because of their software, they are also
easy to program incorrectly. Superficially it is easy to fix software prob-
lems, but the more complex a system becomes the more difficult and
expensive it is to deal with these. In fact, a whole technique of “software
maintenance” has arisen to deal with problems as they occur. John Shore,
the author of The Sachertorte Algorithm, has argued that if a car needed as
much attention from the manufacturer as computers do, then the car
would probably be called a lemon!

In order to explain the fundamental problems that software imposes on
systems, Ornstein described the two basic steps of software construction.
First, the researcher studies a problem in the real world, decides which
aspects of it are relevant and devises rules, then formal specifications, to
govern the behaviour of the computer. Second, the researcher takes these

12



