Coming to the soil pipes inside a house, do not or any account have anything else but iron. They are all the better of being coated with some solution, though there is an objection to this, in that any blows that may be in the iron are very difficult to discover. Inspect all the pipes closely to see that they are sound and have the joints well made with oakum and lead. As in the fire clay drains, do not if it possibly can be avoided, use square branches. Inspect the inside of the branches to see that no ridge is there, a ridge sometimes occurring in the casting at the junction of the cones. Another point to be particular about is where a pipe is to be cut to make a short length. Do not allow a jagged edge to be used, as the consequence will be that when the oakum is put in some of it will be almost sure to get into the pipe thus, and form an obstruction. At the junction of lead and iron pipes I would advise you to use copper flanges, as brass is more liable to corrosive action than copper.

ARCHITECTURAL GUILD.

THE Architectural Guild held its monthly meeting at Long Branch on Thursday afternoon, the 9th of August. There was a very good attendance and the afternoon was spent in a very pleasant and profitable manner

ARCHITECTURAL EDUCATION IN THE STATES.

NDER the above heading the American Architect has a lengthy article on the architectural instruc-As it is the expressed purpose of the Minister of Education for Ontario to establish a Chair of Architecture in Toronto shortly, the course of study prescribed in the Massachusetts Institute published herewith will be of interest to those who may intend to study architecture in our own country. The regular course, as we mentioned last month, extends over four years, but a special course of two years has been planned for students who cannot devote the longer period to this branch of study. The special course is as follows:

FIRST YEAR.

PIRST TERM. The Orders and Elements of Architecture. Sketching and Water-Coloring Mechanical and Free-Hand Drawing. Materials. Materials.
Elementary Mechanics.

SECOND TERM. Original Design. Sketching and Water-Coloring Mechanical and Free Hand Drawing. bades, Shadows, and Perspective.

tive, Common Construction. Graphical Statics, Architectural History,

SECOND YEAR.
SECOND TERM.

PIRST TERM. Pika) Land.
Original Design.
Sketchiag and Water-Coloring
Specifications.
History of Urnament,
Problems in Construction,
Ventilation and Heating,
Working Drawings and Fram-

Original Design.
Sketching and Water-Coloring
Specifications and Contracts.
History of Ornament,
Planning.

The regular course is the same for all departments of the Institute during the first year, and is confined to general studies, with the single exception of a large amount of mechanical and free-hand drawing. No one is allowed to continue in the department who does not have credits in mechanical drawing, including geometrical drawing, shades and shadows and descriptive geometrical drawing, shades and shadows and descriptive geometrical drawing, shades and shadows and descriptive geometrical drawing.

The regular course is as follows: FIRST YEAR.

PIRST TERM. SECOND TERM Algebra. Plane Trigonometry. General Chemistry. Chemical Laboratory

Algebra, Solid Geometry, General Chemistry, Chemical Laboratory, History of the English Language.
English Composition.
French (or German).
Mechanical and Free-Hand

SECOND YEAR.

PIRST TERM. The Orders and Elements of Architecture.

Analytic Geometry. Physics. Descriptive Geometry. Political Economy.

THIRD YEAR PIRM TERM. Original Design, Sketching and Water-Colorin Working Drawings and Fran

Working Drawings and Fram-ing. Lecture on Fine Art, Integral Calculus. German Statics. Structural Geology. Physics: Lecture and Labora-tory. German.

SECOND TERM. Original Design.
Common Constructions.

Chemical Laboratory.

Political history since 1815.

French (or German).

Mechanical and Free-Hand

Architectural History, Shades, Shadows and Perspec tive. Sketching. Deferential Calculus Physics. English Rose,

. SECOND TERM. Original Design,
Sketching and Water-Coloring
Iron Construction,
Kinematics and Dynamics,
Strength of Materials,
Stereotomy.

FOURTH YEAR.

PIRST TERM.
Advanced Original Design.
History of Ornament.
Sketching and Water-Colorin
Problems in Construction.
Specifications.
Stree-** ecifications.
rength of Materials.
cture on Fine Art.
taking and Ventilation

SECOND TERM.
Advanced Original Design.
Sketching and Water-Coloring Planning.
Schools, theatres and churches.
Problems in Construction,
Specifications and Contracts.
Constitutional History.
Heating and Ventilation.
Advanced French.

SPCOND TERM

The two-year special course thus includes the mechanical and free-hand drawing of the first year of the regular course, the drawing and design of the regular second and third years, and the more strictly professional lectures of the second, third and fourth years, with a practical course of its own in trigonometry and graphical statics, without the higher mathematics, which are pursued quite extensively during the four years' course.

OUR ILLUSTRATIONS.

CHURCH AT ALMONTE, ONT.

STORE FRONTS FOR MESSRS, JOSEPH MCCAUSLAND & SON, TORONTO-DARLING & CURRY, ARCHITECTS.

DETAIL FOR VERANDAH.

HOUSE AT 399 WELLESLEY STREET, TORONTO.—KNOX & ELLIOTT, ARCHITECTS.

W. T. Whitepay, architect, late of Vancouver, B. C., has moved to San Diego, California, and opened an

Mr. James Wright, architect, of Montreal, has taken a partner in the person of Mr. Findlay. The firm name is now Wright & Findlay.

PERSONAL.

Mr. C. Schreiber, Chief Engineer of Government railways, is at present on the Pacific Coast.

Mr. Gobeil, accretary of the Public Works Department, has returned to there from the felo of Orleans, where he spent some weeks recruiting his

It is rousoured that Mr. Collingwood Schreiber, Chief Engineer of Government Railware, will aboutly resign his position, and that Mr. Walter Shashy, M. P., will be asked to become his successor. It is not considered probable that Mr. Shanly will accept.

HAMILTON.

(Correspondence of the CANADIAN ARCHITECT AND BUILDER.) SINCE my lest report, I regret to have to say that building prospects in He milton have not improved. There have been numers let for the number of private residences that were in mplation in the spring, and very few tenement buildings have contempation in the spring, and very leve receivement, outleage naive been errected this year—so different to previ us years when whole blocks, were built by those enterprising contractors, the Patter-son Brox, of this city. In fact it is understood that they don't intend building nay more for instalment speculation, as a number of dwelling houses built by them in this pince remain undisposed of outleast it is feet, then have concluded that the procedure did not d that the procedure did not and to let; in fact, they have conclude pay. It is quite apparent that the bad result of the strikes is having its effect, and there is little or no work for the building naving its circs, and urrer is into or his work to the dualing trades, who will have to face a long winter after a comparatively idle summer, and without the usual provision being made for the time when there is never work to do. I understand that the same state of things circis is in Toronto and deswhere. One would think that the unions would seriously consider the position, and change

their programme.

The work on our new City Hall is progressing favorably now that the stone, which is brought from Nova Scotia, is coming to hand, and a number of stonecusters and masons have steady enhand, and a number of stonecutters and masons have steady e ployment on the job. The contractor, Mr. Pigott, deserves gre credit for his indomitable energy and perseverance, having had contend with the most determined opposition of the labor unice, having had to who made every effort to prevent the work from being carried or in opposition to their absurd regulations.

lam glad to see that the action of the Provincial Government in engaging a foreign architect to prepare plans for the new Parki-ment Buildings in preference to Canadian talent, is being con-demand, and as the adopted designs are inferior to those prepared by the Toronto architects, and will cost vastly more for the building, there must be a very unpleasant reflection for the responsible parties. But when Canadian architects become incorporated and united as a body they will not be treated thus unfairly.

I am glad to say that our Building Inspector's book is ordered to be accurately kept in luture, proper entries being made by the proprietors or their architects, so that hereafter I can forward you a correct statement of all new buildings to be creeted in Hamil-

The strength of fire-clay as a building material says one who ought to know can hardly be estimated. Recently a piece of beam filling, containing about three square feet, designed simply to be numg, containing about totes optimize feet, occupied samply to be used as a celling and not intended to carry, the weight of the floor above, was placed on supports and londed with a weight of 5,000 pounds, which it carried without any sign of giving. That was about 1666 pounds to the aquare foot, and the strongest floors now made are only designed to carry about 300 pounds to the foot, I didn't see the use of making the test, as the article in question carried no weight but its own, but the architect made it and the clay stood it. Fire-clay is now subjected to a heat of 2000' in baking, is said to be a greater heat than is raised in the blast furnaces in which it is placed to reduce one. The uses to which fire-clay brick, tiling and tubing are being put in modern firepreof buildings are now almost innumerable, and the end is not yet,

Architects, Engineers Builders, Contractors and others are invited to mirribute to this department of their experience regarding methods of matroction. Also particulars—such as location, character, cost and ame of oromer, etc.—of any works of construction in progress.

PROPORTIONS OF THE PARTS OF THE STAIRS.

THE breadth of the steps of common stairs is from 9 to 12 inches in the best staircases in private and public buildings.
In such buildings the breadth ought never to be less than 12 inches nor more than 15 inches.

A step of greater breadth requires less height than those of less breadth. person who attempted to fix the relation between the height of the riser and width of the steps was Mons. Blondel, in his

"Cours d'Architecture." If a person walking on a level plane over P space, at each step and the height which the same person could ascend vertically at one step, with equal case was H; then, if h be the height of the step, and ρ the width, the relation between ρ and h must be such that when p=P, h=0, and when h=11, we st have ≠=0.

The conditions are satisfied by an equation of this form; h=H 1

Blondel assumes 24 inches for P, or the step a person can make rith case on a level plane 12 inches for H, or the height a vertical step can be made with equal case; and putting these numbers for P and H, In our equation, it becomes $h=\frac{1}{2}(24-p)$, which is received Blondel's rule. We do not think that the rise, which is equal to a level step of 2q inches is more than rr inches, but it would be difficult to ascertain the ratio exactly, and the above are so near and agree so well with our observations on stairs of easy ascent, when the breadth of tread includes the nosing, that they may be taken from the elements of a practical rule.

e, according as the tread p, or the rise h, is given we have 24-P r −; or ≠=24—2h.

Thus, if the height of a step be 6 inches, then p=12, and =6, the rise for a step that has a tread of 12 inches, in-

2 cluding the nosing, ought not to exceed an inch, we have these

TO FIND THE PROPER RISE FOR THE STEPS WHEN THE TREAD IS GIVEN.

From 24 take 1=23; from the remainder, 23, substract the breadth of the tread in inches, and half the difference will be the

Thus, if the tread be 12 inches, then

12 2)[[

s % inches, the trend required.

TO PIND THE PROPER TREAD WHEN THE RISE FOR A STEP IS GIVEN.

Subtract twice the rise from 23 and the remainder will be the roper width of the tead. Thus, if the rise be 5 inches,

EX (=10

13 inches, the trend required.

Again, if the rise be 7 inche

9 inches, the tread for a step with a rise of 7 inches, re we set out the stairs in a building we must consi height of the story and determine upon the height or rise of the steps, which being done we must take the height of the story in inches and divide the number of inches in the height of the story by the least rise proposed for a step; if the result be fractional, divide the height of the story by the number, neglecting the frac-tion, and the result will be the exact number of steps. For example, if the height of a story is to be to feet 4 inches, and the height of a step is to be not less than 7 inches, how many steps will be required in order to ascend to the given beight?

Here (10 feet 4 inches) X 12-124 inches.

124 may 5-7, which neglecting the fraction, is the number

17 But if there be no winders in the stairs, an even number or steps will be more convenient than an odd number. Therefore other 18

or 16 may be adopted; if we must have 16, $\frac{124}{16}$ =7% inches, which may answer very well; but if we are still confined for room

may hander very ver; but it we use aim continue to room the plan we must have recourse to winders.

The breadth of a stalicase may be from 5 to 20 feet, according to the destination of the building; but if the steps be less than 2 feet 4 inches in length, they become inconvenient for the passing or stairs should be avoided, even in of furniture, and such narr

When the height of a story is very considerable, resting places come necessary. In very high stories that admit a sufficient