335 cubic-foot (9.5 m³) chamber, auto-exhaust hydrocarbons, and up to ten-hour irradiation time³⁶ and The HEW study using a 335 cubic-foot (9.5 m³) chamber, toluene and m-xylene, and 6-hour irradiations.³⁷

Trijonis^{38,39} has recently reviewed the results of these studies, as summarized in Table 6-2. As indicated in Table 6-2, the various chamber studies basically agree concerning the dependence of maximum NO₂ and average NO₂ on NO_x input. With other factors held constant, maximum NO₂ and average NO₂ tend to be proportional to initial NO_x. The minor deviations away from proportionality that sometimes occur tend to be in the direction of a slightly less than proportional relationship, i.e., a 50 percent reduction in NO_x input sometimes produces slightly less than a 50 percent reduction in NO₂.

There is less agreement among the chamber studies concerning the dependence of NO₂ on initial hydrocarbon concentrations. With respect to <u>maximum</u> NO₂, the Bureau of Mines study indicates essentially no dependence on hydrocarbons. However, two other studies suggest that hydrocarbon reductions decrease maximum NO₂ concentrations. The UNC results indicate that 50 percent hydrocarbon control tends to decrease maximum NO₂ by about 10 percent to 20 percent. The General Motors studies imply that 50 percent hydrocarbon control reduces maximum NO₂ by about 25 percent.

I-70

Į

0

1

Ц

I