
noticeable in Gramme-wound machines, as the end wires are less important.

All the above facts go to prove that if there is anything to be gained, as regards the production of the field, by increasing the daimeter of the armature and the number of poles, there is nothing, considering the armature by itself, to be lost by it. It may in fact, be rather an advantage, because the weight of iron core is reduced. It is true the peripheral velocity is increased; but this does not matter in the least, provided a certain limit is not



exceeded. Opinions differ as to what the limit should be, some machines working at 50 feet per second, others at 100, and a few as high as 125. But there is no reason whatever why any properly constructed armature should not run at a periphery speed of 100 feet per second; and provided this velocity is not exceeded, any idvantage which may be obtained by a relatively large armature and increased number of poles should be secured.

7.—DIMENSIONS OF THE FIELD MAGNETS.

It will be apparent, from the foregoing considerations, that the employment of two, or more than two, poles for direct-current machines of moderate dimensions resolves itself mainly into a deliberation regarding the most economical shape to give to the field magnets. As regards the armature, considered by itself we may say that the choice of dimensions is mostly a matter of convenience, seeing that the amount of copper required and efficiency are for a given output practically unaltered by variations in this respect, while the reduction in the weight of the core due to an increased number of poles is to some extent compensated by the extra expense of larger plates and increased weight of the armature supports. Again, the cost of the labor is increased by the larger diameter; but, everything being taken into account, considerations respecting the armature do not influence the design to a very great extent. One thing in favour of increasing the poles, as far as the armature is concerned, must, however, be remembered, and that is the reduction, consequent on a smaller conductor being used, of the losses arising from parasitic currents. We now turn our attention to the magnets.

I have said that for the prevention of sparking it is necessary, that, the induction per square centimetre remaining the same, the air gap increases proportionally to the diameter, whether the space is necessary for conductors and clearance or not, but that the coefficient by which the diameter has to be multiplied to give the length of the gap necessary to prevent sparking, diminishes directly as the pole angle. In comparing the magnet system of a four or six-pole machine with that of a two-pole one, it is necessary to adopt dimensions for the armature in accordance with the considerations already mentioned; hence, if the two-pole armature had a length of core equal to one and a half times its diameter, in a four-pole one the length should be about half the diameter. The diagrams (Figs 3 and 4) show the cross sections of two such machines. The diameter of the four-pole

armature is 1.4, and its length .5 times that of the two-pole one, consequently both machines give the same output. The weight of the two horse-shoe magnets in the four-pole machine come to 56 per cent, of the weight of the single horse-shoe magnet, which indicates in this particular case a considerable saving in wrought iron. In taking the copper weight it is necessary to bear in mind that this does not vary simply as the length of the wire if the machines are of the same efficiency, but as the square of the length; so in this particular comparison the copper on the two horse-shoes would be, roughly, 30 per cent. more than on the single horse-shoe, assuming the length of the air-gaps to be the same. Now, if it were possible to reduce the gaps by 12 per cent. or so, the copper weight would be similar in both machines, and we should have credit for a certain amount of iron saved in the construction of the four-pole one, which could be balanced against the increased expenditure for labor. If the gap can be be reduced by more than 12 per cent. always retaining the depth of the winding the same-there is a saving of copper as well as iron, and it is simply the comparison between the value of the copper and other materials used and the cost of the labor in the two cases which determines, least in machines of moderate size, whether two or more poles should be adopted.

In getting out the best relation of L to d in the different types of armatures, it is assumed, of course, that, the volume being proportional to the diameter, the depth of the winding remains unaltered, as that is the condition which gives uniform rise in temperature. Accordingly, for a given output, the layer of copper on the armature will be of the same depth whether the machine has two poles and an armature having a length of only half the diameter. But whether it is possible to reduce the gap to an extent which, with an increased number of poles, will lead to a less costly construction, is a question which for machines of moderate dimensions must receive careful consideration in each individual case. The answer depends upon how much larger the gap has to be to prevent sparking in the case of two poles only, than is requisite to accommodate the conducto rsand allow the necessary clearance. If the difference is considerable, it may pay better to add poles, and reduce the gaps that way, than to do the same thing by diminishing the pole angle or increasing the induction, or both. The question, it appears, is answered in different ways by different people. It is somewhat interesting to note, for instance, that one engineer, distinguished for the past six years as an ardent advocate of multipolar machines, has,

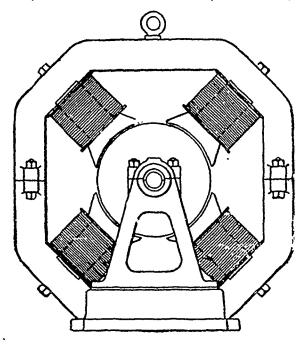



FIG. б.

after reducing from six poles to four, lately arrived at two, while another has jumped straight away from two to six without a halt at the intermediate number.

But when we come to machines of a certain size there is undoubtedly a gain in employing more than two poles only Consider the case of a two pole armature of 60 centimetres diameter. Assuming the induction in the gap to be 5.000 C. G. S. lines per square centimetre, and the pole angle 130 degrees,