November 20, 1913.

where l is the theoretical span; it has been proved that a good variation of the cross sections is obtained by this equation.

The form of the centre line of the arches follows a funicular polygon to the dead load of the structure, which can be calculated from the above expression for dx. The d^2y g

differential equation for the centre line is $\frac{dr}{dx^2} = \frac{1}{H}$

where g is the load per unit length and H the horizontal pressure. By integration d_r

$$\overline{d_x} = \frac{1}{H} \int gd_x + C; \quad (\frac{1}{-1} = 0, \text{ giving } x = 0 \text{ and } C = 0)$$

$$y = \frac{1}{-1} \int d_x \int gd_x + C_1;$$

$$(y = 0, \text{ giving } x = 0 \text{ and } C_1 = 0).$$

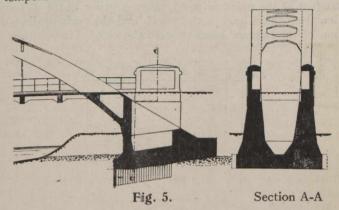
Fig. 3.

In calculating the ordinates at the various points of the centre line the integrations are replaced by summations and the rise of the arches chosen as 34 feet; the ordinates equation for y. H for this bridge is 345 tons.

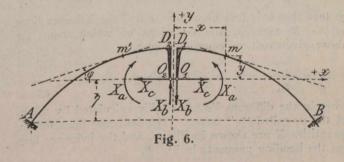
The arches, having no hinges, are statically indeterminate in the third degree. The general form of the equations by which the three unknown quantities (X_a, X_b) and X_o) are calculated, are with the usual notation

$$\begin{array}{rcl} X_{\mathbf{a}}\delta_{\mathbf{a}\mathbf{a}} &+ & X_{\mathbf{b}}\delta_{\mathbf{b}\mathbf{a}} &+ & X_{\mathbf{c}}\delta_{\mathbf{c}\mathbf{a}} &= & \Sigma P_{\mathbf{m}} \delta_{\mathbf{m}\mathbf{a}} &+ & \delta_{\mathbf{a}\mathbf{t}}, \\ X_{\mathbf{a}}\delta_{\mathbf{a}\mathbf{b}} &+ & X_{\mathbf{b}}\delta_{\mathbf{b}\mathbf{b}} &+ & X_{\mathbf{c}} \delta_{\mathbf{c}\mathbf{b}} &= & \Sigma P_{\mathbf{m}} \delta_{\mathbf{m}\mathbf{b}} &+ & \delta_{\mathbf{b}\mathbf{t}}, \\ X_{\mathbf{a}}\delta_{\mathbf{a}\mathbf{c}} &+ & & X_{\mathbf{b}}\delta_{\mathbf{b}\mathbf{c}} &+ & X_{\mathbf{c}} \delta_{\mathbf{c}\mathbf{c}} &= & \Sigma P_{\mathbf{m}} \delta_{\mathbf{m}\mathbf{c}} &+ & \delta_{\mathbf{c}\mathbf{t}}; \end{array}$$

 $\delta_{at}, \, \delta_{bt}$ and δ_{ot} being the influences due to variations of temperature.



From the theory of arches without hinges it is known that a very practicable statically determinate auxiliary system is obtained by introducing the normal force X_{\circ} , the transversal force X_{\circ} and the bending moment X_{\circ} at the crown of the arches as the statically indeterminate quan-



tities and allowing them to act upon the arch from a point O (see Fig. 6) in the symmetrical axis of the arch determined by

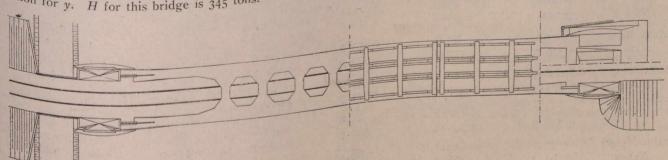
$$\delta_{ba} = \delta_{ab} = 0$$

$$\delta_{ca} = \delta_{ao} = 0$$

The equations for x will then be

Xadaa	=	$\Sigma P_{\rm m}$	δ_{ma}	+	Sat,
Хьбьь	=	$\Sigma P_{\rm m}$	Smb	+	Sbt,
X coc	=	$\Sigma P_{\rm m}$	δmc	+	Sot ;

as $\delta_{ob} = \delta_{bo} = 0$, on account of the symmetry, and the statical determinate auxiliary system will be two curved beams with one fixed and one free end. (Fig. 6).



747

Fig. 4.—Plan.