are found in successive generations of cells. This peculiar variation, as has been pointed out more particularly by American observers (Montgomery and Sutton) is frequent in insects in the cells which ultimately give rise to the germ cells. As Moore and Arnold, of Liverpool, have just shown, a like constancy is to be made out in the types of chromosomes seen in the spermatocytes of mammals, even of man himself. The constancy of the varieties in individual species suggests that the chromosomes of different orders possess different properties and determine different characters or sets of characters in the cells to which they are distributed and in the individual formed from the aggregation of these cells. In support of this hypothesis are the remarkable observations first of McKlung, of Kansas, and later of E. B. Wilson, of New York, that the spermatozoa of sundry insects are of two orders, though there is but one type of egg. of spermatozoon gives rise to males, the other to females, the difference between the two being in their chromosomes. In the maturing spermatocytes which give origin to the spermatozoa, either the one set of cells possess an accessory chromosome, or, in other cases, a particular chromosome in one half of the maturing spermatozoon is large, in the other half is minute. To quote McKlung, "A careful consideration will suggest that nothing but sexual characters thus divides the members of one species into two well defined groups, and we are logically forced to the conclusion that the peculiar chromosome has some bearing on the arrangement."

Here we are not discussing sex, and I do but note these recent observations in passing. There are other cases, not as yet fully worked out, in which, as in the Aphides, there would appear to be one type of spermatozoon and two types of ova.

The natural conclusion to be reached from all these data is that the nuclear matter conveys and determines, or controls the inherited peculiarities of the individual; further the conveyance is through matter contained in the chromatin loops or chromosomes, while it may be that these individual loops, varying among themselves, determine particular conditions.

What we know concerning the spermatozoon points very definitely to the conclusion that the groups of chromosomes distributed to the spermatozoa derived from a single spermatocyte are not identical, each spermatozoon receiving only one-half the number of chromosomes proper to the primordial germ cell, and to the cells in general of any particular species. The ovum on its part exhibits a like reduction. To enquire further into this remarkable reduction process would lead us