ilhe Poinon of the Rattlesnafe a Ferment. - Hitherto the general beliet has been that the poisonous matter secreted by certain species of reptiles was nothing more that a poisonous saliva, acting in the manner of ferments. M. Lacerdo has been making, at Rio de Janeiro, some researches into the action of the venom of the rattlesnake, which throws much new light on the subject. His investigation shows that the saliva contains What are called figured ferments, the analogy of which with bacterides is very remarkable. From a young and vigorous crotalus, subjected to the action of chloroform, he obtained a drop of the venom on a chemically clean piece of glass, and at onee placed it under a microscope. Almost immediately he observed the formation of a filamentons pulp in an arborescent disposition. Gradually the thickentd filament, after having pushed out spores, dissolved and disappeared, and the liberated spores swelled and enlarged visibly, each of them sending out a
minute tube which lengthened ravidly. After a very short minute tube which lengthened rapidly. After a very short period the latter separated from the first spore, and constituted amother nucleus for engendering the deadly contamination. In of examination of the blood of animals killed by the bite of one of these snakes, M. Lacerdo noticed that the red globules of the hlood commenced to change by presenting some small, brilliant Points on the surface, which spread with great rapidity, and ultimately the globules melted one into the other, forming a sort of amorous paste which could no longer circulate in the veins. Other animals, in which that blood was injected immediately after the death of the first, expired in a few hours, presenting all the smyptoms of having themselves been bitten, and their blood always showed the same alteration. M. Lacerdo concludes his
toemoir toemoir by stating that numerous experiments have shown that the true antidote for serpent poisoning is the injection of
alcolating alcohol under the skin, or its administration through ihe mouth.
Medicinal Effects of 9nions.-A mother writes to an
 it was generally when we had cold meat minced-I gave the children a dinner which was hailed with delight and looked forWard to. This was a dish of boiled onions. The little ones Knew not that they a were taking the best medicine for ex , elling
What What most children suffer from-worms. Mine were kept free
hy hy this remedy alone. It was a medical man who taught me to
eat boil eat boiled onions as a specific for cold in the chest. He did not $\mathrm{kn}^{\text {now }}$ at the time, till I told him, that they were good for anything else." The editor of the journal adds: "A case is now under our own observation in which a rheumatic patient, an ex${ }^{\text {treme }}$ sufferer, fiuds great relief from eating onions freely, either cooked or raw." Dr. G. W. Balfour, in the Edinburgh Medical
Jolirnal real Journal records three cases in which much benefit was afforded patients by the eating of raw onions in large quantities. They acted as a diuretic in each instance.
The Teeth. -As the result of numerous trials made by the exposure of recently extracted teeth to the action of various substauces, M. Maurel comes to the conclusion that if various othedicinal substances are injurious in their action on the teeth, Others in still larger numbers prove, in their habitnal employprent, quite inoffensive. Thus, if we are re, guired to take great precautions respecting citric acid, tannin, chlorides of zinc and
antime antimony, perchloride of iron, sulphate of copper and alum, we May coutinue to employ with complete safety arsenious and caralcehacils, vinegar, corrosive sublimate, chloride of potash, and e hol, tincture of beuzoin, essence of mint, tincture of quinine and eatl de cologur. Tobacco, whether used in chewing or king, dues not injur the teeth beyond their discoloration.
Vevtilation by the chimey.-A parlor-fire will consume Gallonours 40 punds of coal, the combustion rendering 42,000 gallons of air unfit to support life. Not only is that large anount
of deletering of deleterious yroduct caried away and rendered innoxious by the chimuty, but five thmes that quantity of air is carried up by ascent iraft, and ventiation thus effectually maintained. The ness of smoke up a chinney de punds on the comparative lightness of the column of air within to that of an equal column if the fine thager the chinney, the stronger will be the draft, be so fire be sufticiently great to leat the air; hut it the chinmey druft is di that the air is cooled as it approacies the top, the Mas diminishent.-Firaduy.
Magnesium Steel.-Magnesium also causes a remarkable coinese of strurture in other metals. A coarse-grained steel beNinges tine-graiued on the addition of one-fifth per cent. of magnesium. In performing the expurisintits referred to, the the crucible must be introduced througha a hole in the cover of additiocible after the oxypen has been first removed by the adition of a few pieces of charcoal. Without this precaution violent explosions are apt to occur. -Btr. l. Chem. Ifesell

JUDICIOUS ADVERTISING.

A man was standing on the corner of Santa Clara aud First strects yesterday, denouacing newspaper advertising to a crowd of listeners. "Last week," said he, "I had an umbrella stolen from the vestibule of the -_ Church. It was a gift, and, valuing it very highly, I spent double its worth in advertising, but have not recovered it."
" How did you word your advertisement?" asked a merchant.
"Here it is," said the man, producing a slip cut from a newspaper. The merchant took it and read:
"Lost-From the vestibule of the - Church last Sabbath evening, a black silk umbrella. The gentleman who took it will be handsomely rewarded by leaving it at No. - San Fernando street."
"Now," said the merchant, "I am a liberal advertiser, and have always found that it paid well. A great deal depends upon the manner in which an advertisement is put. Let us try for your umbrella again, and if you do not acknowledge then that advertising pays I will purchase you a new one."

The merchant then took a slip of paper from his pocket and wrote:
"If the man who was seen to take an umbrella from the vestibule of the -Church last Sabbath evening does not wish to get into trouble, and have a stain cast upon the Christian character he values so highly, he will return it to No - San Fernando street. He is well known."
This duly appeared in the paper, and the following morning the man was astonished when he opened the front door of his residence. On the front porch lay at least a dozen umbrellas of all shades and sizes, that had been thrown in from the sidewalk, while the front yard was literally paved with umbrellas. Many of them had notes attached to them, saying they had been taken by mistake, and begging the loser to keep the little affair quiet. -Detroit Pree Press.

WESTON'S ELECTRIC LIGHT GENERATOR.

Mr. Edward Weston, of Nuwark, N.J., who has earned a great reputation as the inventor and manufacturer of the dynamoelectric machine, now used in many clectro-plating and electroty. ing establishments, both here and abroad, has for some time given his attent on to the construction of a similar machine, especially adapted for the production of electric light, and of the lamps used in connection with the same. In the adj ined engravings Fig. 1 represents the machine, Fig. 2 the lamp exteriorly, Fig. 3 another form of lamp, showing details of carbon carriers and of electro-magnet and artnature regulating their position, and holding the sliding rod wi'h a clamp, which automatically releases and keeps the light steady. This is one of Mr. Weston's latest improvements to the electric lamp. Fig. 4 represents the iron armature of Fig. 1, without its coils.
The machine (Fig. 1) is constructed with a view of keeping it in contimuous operation without heating it to such a degree as to necessitate its stoppage so as to allow it to cool off, a feature in which many machines of this kind bave failed. For this purpose the large stationary soft iron electro-magnets are, where they are not covered by the coils, perforated by slits. Fig. 1 shows these slits in the centre .f the top and on the sides, and when in motion the hand can feel the currents of air pass out of these slits, being propelled from the rotating centre to the circumference hy the centrifugal tendency, on the same principle as the action of rotary fan blower. This continuous current of air, taken in cool at the ceutre, and blowing nut at the circumference, is most etfective in keeping the machine cool, which, without this provision, loses much of its effectiveness, as the magnetic power of iron descruds when the temperature rises, and the conductivity of the coils for electric currents diminishts from the same canse. Therefore, even if a machine does not bu come hot enough to necessitate its stoppage, it is of importance to keep its temperature at as low a degree av possible, so as to secure its maximum effectiveness.
The power required to drive these in .rhines is form two to twelve horses, nad depmols on their size, of which the price varies from $\$ 200$ to $\$ 1,200$, the larger ones buing capable of furnishing several lights. They are commencing to he largely used for brilliant illumination gurposes in New York and vicinity, for instance, on the new iron pier at Conry Island.
These machines $+x$ rel in simplicity and compractness; they appuar to he eminently durable, and are claimed to be the most powerful for their size and cosit of any in the world, as it is reported that actnal tests showed them to yield more than double the amount of light per horse-power alsorhed than that oltained from any other machine luilt in this country.

