IMPROVED CURREN'L WAL'ER WHEEL

The means of utilizing the powor afforded by the current of a river, whore sufficient fall cannot bo obtained to run a turbine wheel successfully, have been brought to comparative perfection within a few years by the improvements which have been made in this class of devices. Necessarily, where eveu the best form of current wheel is used, the application of the power of the stream is made ic but an imperfect degree as regards economy, a large proportion of it running to waste, and only the effect of the water directly in contact with the wheel being gained; but as no other expense than that of constructing and setting the wheel is incurred, the investment is often a very profitable one. To obtain all the power which the volume of water in the stream would afford would require the building of a dam, and ronsequently the employment of capital, frequently to a very liberal excont, in securing the primary facilities for doing business; and where the capital is not at command, or a large business is not contemplated, an ample return may be realized on a moderate investment by putting in a current wheel of the most approved construction. Such a wheel is illustrated in the enyraving on the preceding page, which shows a basin made in the bank at right angles with the stream, its sides being protected by planking, for which stont may be substituted if cheaper or more convenient. In this basin floats the raft which carries the wheel, the frame of the raft being so made as to balance the weight of the wheel. The basin or slip is dug deep enough to float the raft and wheel at low water, and extends into the bank a distance equal to the length of the whole apparatus, which may thus be drawn back entirely out of the current. This is a point of special value, as by means of this arrangement the wheel and raft can be withdrawn out of resch of drift wood and thus be protected from injury when the stream is swollen by heavy rain or melting snows.

The wheel, which is an undershot, is shown projecting into the current and in operation, its motion being communicated through: the gearing A, to the horizontal shaft B. On this shaft slides a loose pulley, C, having on the left hand side of ita hul an annular recess and a clutch, by which, when desired, it is engaged with the shaft B. The annular recess receives one end of the shipper lever D, the other end of which is made fast on the bank, and by means of a hinge the lever is rendered adaptable to the position of the raft at any stage cf water. The shaft E , which is rotated by a wheel at one end as shown, has chains wound around it, leading to the opposite ends of the raft; and tinus, by turning the wheel toward the bank, the raft is drawn in, while by turning in the other direction it is moved out into the stream. When the raft is ryn out, the wheel is held in position by a pawl which drops into a recess in the shaft E . 'l'he rollers F , on the sides of the raft, only one of which is shown in the engraving, facilitate the moving of the raft by their contact with the plauking of the basin, preventing the friction which would result from the raft being forced by the current against the side of the slip.

It will be seen that when the raft is moved out, the lever D will draw the clutch into action, and the motion of tho shaft B, received from the water wheel, will be transmitted through the loose pulley, C , and its belt to the machinery of the mill. On the other hand, when the raft is drawn in, the lever D, remaining rigid, will push the parts of the clutch asunder and the loose pulley will cease to turn. By this arrangement, the same appliances by which the raft is moved in and out serve to regulate the transmission of power and the starting and stopping of the machinery.-Scientefic Ime, scan.

The Builder has the following: Many have scen working on the Thamesa steam dredger, named the Sampson, with an endless chain of laden buckets rising at a low level and disappearing at a higher altitude. The Sampson of the Thames has, it scems, been moored at Hartlepool, and as it works by tide Sundays are perforce called in as working days. Miners are an inquisitive body of men, and on their leisure day a number watched the Sampson's buckets go up and down, and tried to count them. Having reached 1,000 , they gave up their task, exclaining, "Sampson was a strong man, but, by gum, lads, he never lifted 60 many buckets of mud as this fellow, and kept at it as he docs; when will the last bucket stop, ch?"

PROF. FLEHMING JENKIN ON P.I'LEN'I'S AND THE PA'IENT LAWS.

At the University of Jidinburgh, on Nov. 3rd, Prot Fitecm. ing Jenkin delivered to the Engineering class a lecture on Patents and the Patent Laws, of whicit the followith is an abstract :-

In the outset he referred to the vulgar error that a wan ol mere native shrewdness could make some great discover in a branch of enginecring of which he hnew nothing pratteath or theoretically. Yet a whule tribe of patentees, miscitled in ientors, really did exist, who belouved that they had almust fortuitously, without effort to themselves, piched up some great nugget which must have lain stari. in th- face of the practical workers of the ground for years. Two classus of men made valuable inventions, the men who by practical expenence in a given manufacture knew the defects of existug mechanism and the requirements of some special manufacture, or the meal whose theoretical knowledige ot a subject was such that they could understand the conditions of success in amachine or araufacture better than thuse who had a mere practical acquaintance with the subject. There was a popular idea that if patents cost only a few shillings the poor anventor would be greatly benefited. He thought the cases were very few where an invention of real merit was lust to the inventor in consequence of the expense of a patent. It a yoor man could not persuade any one to invest the cost of a pateat in his idea, he would certainly tind it equally diticult to induce mon to invest moneg in expermmental manafacture ater he had secured the patent. The real dithculty was the wat of money to introduce the invention in most cases, and the difficulty did lead poor men who had valuable patents ulcastonally to part with them for a price disproportionate to what was ultimately found to be the value of the invention. No doubt, if these men paid less for their patents they sould have more money left for experiments, but, on the other hand, it must be remembered that cheapness would lead to the vexatious multiplication of trifling and dishonest patents, and this led to the consideration of the grounds on which patents were granted by the State.

Patents were not granted as rewards of merit, but purely $\mathrm{r} \eta$ grounds of public utility. The State followed the simple prosciple of paying for results, either actual or in prospret. A inonopoly for a limited number of years, was oftered as an miducement to make Inventions, to disclose thear, and to apply them. All who wished that the patent laws should remam in furce ought to contend that without this inducement men would invent less end carry out fewer useful inventions. If they could not persuade the Legislature of thi-, patent laws wand os abandoned, for it was certain that the restrictions they umposed caused some hindrance to the improvement and extension of manufactures. There were many trilling amprovements which manufacturers would adopt if they had to pay no royalty, but for which they refused to pay a penny while the patent lasted. The sum of many trifine improvements would often bo equivalent to a single sreat improvement, and by preventing this, patents injured the commanity. Moreover, inans patents wero taken out for trilles which were certam to be reinvented by dozens of men as soon as the want for the artucte was felt. Whenever a manutacturer was stopped by a previous patent from carrying out some little mprovement of has own, he began to consider as monstrous the proposition that a man should hava a munopoly in an adea merely because he thuugh of it first. These werc excellent arguments amamst wrauting patents for trifling or obvous improvements, and these vesatious patents would be muth multiplied if their cost sere lessencd, but they left quite untonched the reasons for granting temporary monopolies of really valuable inveutions. The mere publication of an idea was a very different thing from the introduction of a succersful invention. It was a mistake to think that when a valuable idea was published capitalists and angineers flew to seize it, and struggled fiercely as to who should have the honour and profit of carrying it into ctiect. Perhaps if Watt had published the idea of a separate coudenser in a scientific journal and stopped there, we inight have been without our present form of steam-engine to this day, but if this be thought too daring an hypothesis he (the l'rofessor) cond nurertheless insist that the inventor of any invention, however excellent, had to force it upon the public at much expense and much labour and vexation. Very fer men indeed would risk money, time, and peace of mind in the struggle but for the

