last would have great definition，but its field being so limited it would lose it， with the least vibration of the instrument．
＂If the relative size is kept within proper limits，all things being equal， clensity and clearness of glase，etc．，the instrument which has the longest focus， although of small aperture，is the most powerful and will do the best work．
＂I give the length and aperture of a few of the principal telescopes，makers＇ names，and where erected ：－

Maxieh．
WHERE FHzCTED．镸第
Dien．．．．．．．．Universal Expos．， 1855 ． 42.0

Mertz．．．．．．．Fxpor， 1807 ．．．．．．．．．．．．．． 25.8
Sccretain．．．．．Parix Obaervatory．．．．．．．．．．．．．．． 16.8
Mertz．．．．．．．Copenhagen．．．．．．．．．．．．．16．8
＂．．．．．．．．Ruman Coll．Fquatorial． 14.6
Framenhofer，Dorpat ．．．．．．．．．．．．．．．．．．15．1．
I，erebours．．．Paris．．．．．．．．．．．．．．．．．．．． 11.0
＂In the construction of a cheap tele－ scope，the objective is the only part on which to make any considemble outlay． Suppose an achromatic lens of 36 inches focal length， $2 \frac{1}{4}$ inches in diameter，has been chosen，and that we wish to mount it permanently．We will make the cells of mahogany，cherry，black walnut or hard maple（mine are of lignum vita）well seasoned and varnished inside and out to protect them from absorbing moisture from the air ；a wood turner will furnish wool and turn three pieces for about 81．50．For a focussing tube get a piece of brass tubing， 12 inches long by $1 \frac{1}{4}$ inch outside diameter；a tin tube would be a cheap substitute．
＂The eye－piece（fig．2）is tumed to fit inside this tube；a recess in the collar of the eye－piece will admit to glue in it a piece of felt or cloth，to keep it from fall－ ing out．A piece of wool， $3 \frac{1}{2}$ inches in diameter，is bored out lengthwise，a little larger than the focussing tube．It is put on a wood mandril，centred and turned， as shown in fig．2．It should be about 5 inches long and have a piece of felt，cloth or velvet glued at each intemal end，so as to confine the friction to those parts only．
＂An arrangement for focussing is made as indicated in figures 2 and 3．The tube is slightly filed across so as to give it sufficient grip for the rubber－covered spindle to move it back and forth．The objective is secured in its cell（fig．4） against a shoulder，from the front，by a piece of spring－wire bent in the shape of a ring．This facilitates the removal of the objective without removing the cell．
＂To make the body of the telescope， take a piece of wood about 3 inches diameter and 33 inches long．Turn it into a roller．Upon this roll a piece of pasteboard，previously thinned on the longitudinal edges and pasted or glued on the outside．Secure until dry ；before taking it off the wood roller it would be
well to cut the ends of the paper tube 31 inches long on a lathe so as to ensure the mounting of the cell and collar（fig．2） centrally．The cell is secured at one end of the tube by three round head screws nul the collar in the same way at the other end．Four round head screws to－ wand the tapered end of the collar regu－ late the axis of the focussing tube in line with the objective．Insert into encal end of the brass or tin tube，$n$ disk of ca． 1 － boand having a pinhole centre，remove the objective from its cell and replace it by a similar clisk with central pinhole． Place a light（this had better he done at night）in front of the objective end of the telescope，now work the four screws， until，when looking through the eye－picee end of the tubs the three pinholes coin－ cide and show a small star－like light in the oljjective disk．The astronomical or celestial eyc－piece is composed of two plano－convex lenses with their convex side towand the objective．＂$\Lambda$＂（fig．2） is called the cye－glass．＂B，＂the field－ ghass．The eye－glass should be one inch focus，and one－half inch in diameter；the field－glass， 2 inch focus，and $\frac{3}{4}$ of an inch in diameter．These should be placed in the cell at a distance of $1 \frac{1}{2}$ inches apart， with a diaphram（＂ C ，＂）having an open－ ing of about 8 inch placed a little in front of the focus of the cye－glass．When observing the sun，use a piece of black glass，cut out of the side of a fiat bottle， as described by Mr．W．H．Smith in No． 2 of Astronomy and Meteonology，secured against the flange＂$D$＂and held by a ring of spring wire．The lenses and diaphram are also secured in their cell in the same way．Figure 5 shows the par－ spective view of the rubber pressure roll for focussing；a mortice is made in the collar（fig．2）to receive it，and the spindle； a piece of wood is shaped，as shown at ＂E．＂It is hollowed out underneath so as not to interfere with the rubleer roll ；a piece of thin brass or tin is perforated and bent，as shown by figure 6，passed under the body of the telescope and is secured in its place by a screw，after the tube is found to work smoothly．
＂A pedestal is made of pine， 4 feet 3 inches high， $3 \times 3$ inches square，and bmeed as indicated by figure 1．Two inch pine will answer for the baso and 1 inch for the braces．The vertical move－ ment is shown at＂$F$ ，＂（fig．3）and the horizontal at＂G．＂
＂Such an instrument can be made（if one has sulficient skill to mount it him－ self）for about $\$ 10$ ．It will give，if properly mounted，as good results as one of the same size，catalogue price in Paris $\$ 28.00$ ，without pedestal，which，laid down in Canada or the United States， would cost about $\$ 12$ more．It would bear a terrestial eye－piece of 35 and an astronomical one of 90 ．
＂A still cheaper mode of mounting would be to make the paper tube as above，
slightly larger than the diameter of the objective，and to glue internally，near end， a strip of pasteboand as a shoulder for the lens to rest against，a piece of pine would do for the collar，a tin tube for the focuss－ ing tube or even a paper tube，if shel－ lacked，would answer．The eyo cell can be made of pasteboard，with sections of lead pipe ns flanges for the lenses．A cardboard diaphrm between the lenses as indicated in figure 2．Great care will have to be taken to mount the lenses of the eye．piece contrally and perfectly parallel on their flat sides．The body of the telescope may bo painted or covered with bookbinder＇s cloth or paper and var－ nished；while the inside of it should le blackened as well as the cells and focuss－ ing tube with a mixture of lampblack， spirits and shellac．
＂Although not indispensable，a finder， ＂K，＂（fig．1）should be provided for this instrument，as it is very difficult to bring an object into its field when using a high power．A good substitute for a finder is the toy telescope ；a fifty cent one is at－ tached to the body of the telescope by means of straps or other devices．After focussing the telescope on a very small distant object，which should be in the centre of its field，focus the toy telescope on the same object and when both are central，secure．
＂Such is the astronomical telescope in its cheapest form ；is it not astonishing that such a little outlay will secure the enjoyment of seeing several celestial wonders，such as the craters of the Moon， the phases of Venus，the satellites and belts of Jupiter，the ring of Saturn，the spots on the Sun，beside some of the double stars and nebulo．
＂In conclusion，I would strongly ad． vise you，by all means，to get a telescope， however small it may be．You will love the science of astronomy the more yout see，and the more powerful the aye you use，the more enjoyment you will have．
＂Mry intention，when I first thought of this subject，was to fully investigato the powers of small telescopes and what they reveal，but as this was recently so ably treated by our President in his paper on＂Small Telescopes and What They Reveal，＂read before our Associa－ tion and published in the May number of Astronony and Meteorology，I con－ sider my task ended．I can only add that my reward will be great if I have suc－ ceeded in convincing you to try your skill in constructing a telescope．

The discussion on this paper closed by the President informing the meeting that the lowest estimate for lithographing and furnishing 500 copies of the diagrams was about $\$ 9.00$ ，an outlay which the present straitened conditions of the finances as regards Astronomy and Mr． teoroloar did not warrant．

