- $L_{rep_{a}}$ = Long waves again reaching the station from the anti-epicentre; path $40000 \pm \Delta$.
 - F = End of record on seismogram.
 - e = emersio, -emergence of phase not sharply defined.
 - i =impetus,—a sharply defined impulse, especially used with P and S.
 - $A_{\rm N}$ = Amplitude or half range of movement of earth particle-not of the instrument, or measurement from the zero line for the N-S component, expressed in microns.

 A_{E} = Amplitude similarly for the E - W component.

46 46 vertical $A_z =$

 $\mu = \text{Microns or } 1/1000 \text{ of a millimetre.}$

 $\gamma = Gal$, or unit acceleration, one centimetre per second per second.

"

 γ_{μ} = Milligal, or 1/1000 of a gal, or acceleration of 10 microns per second per second.

O=Time of earthquake at epicentre.

 $\varphi = \text{Latitude}.$

 $\lambda = \text{Longitude}$ from Greenwich.

 $\Delta = \text{Distance}, \text{ epicentre to station}.$

ca. = Approximately.

T =Period, complete time of oscillation; for simple pendulum = $2\pi \int_{g}^{l}$

 T_{e} = Period of undamped pendulum (seismograph).

 T_{ϵ} = Period of earth particle.

h, m, s=Time, Greenwich Mean Time, midnight to midnight.

 $\mathcal{M} =$ Theoretical magnification of seismograph.

de_=Actual magnification, for damping ratio and periods of earth particle and undamped pendulum.

 V_P , V_S , V_L = Velocity of P, S and L waves respectively.

* = Epicentre.

EXPLANATION OF TABLES, THEIR SOURCE AND USE.

Table 1. This table gives the time interval P-O or I_P between the arrival of the P, longitudinal waves, and the time O, of the earthquake at the epicentre. The symbol O, suggested by

20