3

Now if for l) be substituted $M=$ distance one way in miles instead of feet.
and for W be substituted $\kappa=$ kilowatts delivered instead of watts.
and for E be substituted $t=E: 1000=$ line voltage divided by 1000 .
and for K^{1} be substituted $Z=$ a constant $=1080$
the above formulx become
and (2) total weight $=\Pi^{\prime}=(.1 / \times 5 \times 81)^{2} \times\left(K^{*} \times \operatorname{l(MAO}\right) \times Z \times .1$ $\rho \times\left(+\times 1(K H O)^{2} \times 10\right.$.

$$
=\left(\frac{1 /}{t}\right)^{2} \times \frac{h^{2}}{P} \times\binom{\pi 280}{1(000}^{2} \times \frac{1000}{10^{\circ}} \times Z \times A
$$

$$
=\left(\frac{1 /}{r}\right)^{2} \times \frac{K^{6}}{P} \times \frac{27.8784}{10060} \times 1080 \times 9.06
$$

$$
=\left(\frac{M}{t}\right)^{2} \times 27 \cdot 2.7 \times 46 .
$$

Allowing 2.65% for sag, etc., these formula become

(2) Total weight $=W^{=}=\left(\frac{H}{r}\right) \times \frac{K^{\prime}}{P} \times 2 \times 0$
and the weight of copper per kilowatt delivered

$$
\text { (3) }=L=\binom{H}{H}^{2} \times \begin{gathered}
280 \\
P
\end{gathered}
$$

and the weight per mile of a single wire (1) is obtained by substituting $3 l \times M$ for W in formula (2), thus:

$$
\begin{aligned}
& W=3 M l=\left(\frac{M}{t}\right)^{2} \times \frac{K}{P} \times 280 \\
& \text { or }(4)=l=\frac{M}{(\varepsilon)^{2}} \times \frac{K}{P} \times 93, \\
& \text { and }(5)=3 l=L \times \frac{K}{M} \text { by substitution in equations (3) and (4). }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{M K_{2}}{P_{1}} \times 512.4
\end{aligned}
$$

