blemheim roller mills.

Bfar the most mportant industry in Blanhem, omt., ate the roller mill: of Cimpledl, Kuble fond a sone laur. The mill bualding pooper is a tive ntale bl k , trut ture. with mansiord remp, fort! eyght be fore-ces!te fect in damensons. It comtans fourteen pairs of rolls. and all wher requiste that hamery for the manifle tane of a superior yuality of flour. Adjo:ming the timll on the east is an elewator building, forty 'iwi) feet spuare and eighty feet in height. It has a storage capatity for ;0,000 basheh of pram, the inat hinery being. capable of elenating l,000 bushels pei hour The mill haiv .t capacity for turnomg out 2 jo barrels of tiour datly. For - onsemence of shipment a spur a guarter of a mile long evends from the mills to the man lace of the Firie and Huron rallway, which has a close connertion with the Michixan Ceutral, the Canadian Pacific, and the Crand Trunk rallways. It is estumated that out of the 300,000 bushels of wheat annually srown in this ucinity and marketed in Blenhem, at least $2 ; 0.000$ bushels are conlerted into flour by Campbell, Kutherford $\&$ Sinclar, the proxluct being shipped mainly to the Martime provinces.

Blenhemn possesses a soll that in some resperts in peculiar. Whilst it is a most productive localty for fall wheat it is also a section of country where some of the isest corn of the province is nrown. By some arriculturalists this is not considered very probable, for the reason that com requires hot weather with frequent showers, while wheat, at least when it is filling and ripening, needs just the or asite kind of weather. "This is explaned," said a member of the Blenheim Koller Mills concern, "in this way: Fall wheat, up to the tume it enters the mulk state and begins in fill, stands the rainy weather all right. hence the spring rains are good for both the wheat and the corn. About the tune the wheat bexins to fill the spring rains are slacking up and the weather gradually: gets warmer, which is good for the corn and not detrinental to the wheat until it arrives at the hottest summer heat nith uarm parching winds, which, as a rule, does not occur untul the fall wheat is filled, and hardening, after which, such is the length of the season and the heat of the second half of summer, the corn has plenty of tume to fully devolop and ripen. Our fall wheat is early enough to escape the weather that ripens the corn, hence the season is capable of bringing both to perfection. The soll in this district is largely composed of a rich gravel loam. the last ground upon which anything is frozen in the fall and the first in support iegetation in the spring. And when you add to this the facts that the land slopes south to lake Firie and that we are in a direct line seventy miles south of Toronto, we think we can lay claim to being the richeat part of the Dominim in the variety of cereals we can kmo.

is Perpitual motion possible

THF. reply to this questinn, says the Sicientific. American, depends entirely upon the limitations put upon the term "perpetual motion." If we understand these words in mean a marhine that would stant itself, furnish power for doing work, and continue in operation so long as required, or until worn out, without the assistance of any external agenry, we may say with the utmost confid. enre, perpetual motion is impossible.
If, on the other hand, we define perpetual inotion asa machine dependent for its action upon the variability of one or more of the forces of nature, we may say perpe.

In the fact that never in the history of man has he been able to make a single atom of matter, or create the sinallest fraction of a unit of energy.
All the works of man, of whatever nature or nature, have been constructed of mi:terials already in evistence, and all the work done by man and his enginery has been acco uplished by using current natural forces, such as the xravitation of water, the power of the wind, and the heat encrgy of the sun, or the stored energy of coal and other fuels, or of chemicals.
Having the command of some of nature's forces, inventors have soukht to cirrumient nature's laws, so as to inake water "run up hill," to cause masses of matter to act alternately in accordance with and in opposition in the lan of gravitation; in short, to deprive matter of sravity while ascending. and cause it to act with the full fioce of gravity while descending.

Ainong perpetual motion devices of this class, proposed and tried, is the onc liaving weights arranged on a wheel in such a way as to fall outuardly and increase the leverage on one side of the wheel, while they fold in and diminish the leveraye on the opposite side of the wheel. This machine, it is needless to say, has never moved on its own account, although it has become classic.

In this device, the superior number of weights on the side where the leverage is least, exactly balances the

 are mate to sture eners) wo be wed in conamom:
 11:14.ph
Sun motor, of wroms forms bate been devsed,
 anion uar fumbling power continumbly. A sun motor of sutiocient size with a sumbeble storaje systom, could furnish power the year round in almost any part of the world: success beeng a question of hours of sunshine and capactiles of motor and stonage system.
Of course. "h. it is said with rexard to the sun motor atphes whe equal force to water wheels, windmills, tide and wase motors. Winhout doubt, all of these prome mosers will come mole and more into use as time advances, and storage systems are perfected. Still they do not satisfy the seeker for the ideal perpetual motion. This should fill the conditions tirst mentooned; but, as we have a'ready sad, this is an imponsibilte.

The first and strongest reason for making this positne assertion in refard to the ideal perpetual motion is found

