Our judgement is that:

*

*

- Global mean surface air temperature has increased by 0.3 to 0.6°C over the last 100 years, with the five globalaverage warmest years being in the 1980's. Over the same global sea-level period increased by 10 to 20 cm. These increases have not been smooth in time, nor uniform over the globe.
 - The size of the warming over the last century is broadly consistent with the prediction by climate models, but is also of the same magnitude as natural climate variability. If the sole cause of the observed warming were the human-made greenhouse effect, then the implied climate sensitivity would be near the lower end of the range inferred from models. Thus the observed increase could be largely due to this natural variability; alternatively this variability and other human factors could have offset a still larger human-induced greenhouse warming. The unequivocal detection of the enhanced greenhouse effect from observations is not likely for a decade or more.
 - Measurements from ice cores going back 160,000 years show that the Earth's temperature closely paralleled the amount of carbon dioxide and methane in the atmosphere. Although we do not know the details of cause and effect, calculations indicate that changes in these greenhouse gases were part, but not all, of the reasons for the large (5-7°C) global temperature swings between ice ages and interglacial periods.

- Natural sources and sinks of greenhouse gases are sensitive to a change in climate. Although many of the response (feedback) processes are poorly understood, it appears that, as climate warms, these feedbacks will lead to an overall increase, rather than a decrease, in natural greenhouse gas abundances. For this reason, climate change is likely to be greater than the estimates given above.
- 2. IMPACTS

The report on impacts of Working Group II is based on the work of a number of subgroups, using independent studies which have used different methodologies. Based on the existing literature, the studies have used several scenarios to assess the potential impacts of climate change. These have the features of:

- i) an effective doubling of CO₂ in the atmosphere between now and 2025 to 2050;
- ii) a consequent increase of global mean temperature in the range of 1.5°C to 4° -5°C;
- iii) an unequal global distribution of this temperature increase, namely a smaller increase of half the global mean in the tropical regions and a larger increase of twice the global mean in the polar regions; and
- iv) a sea-level rise of about 0.3 - 0.5 m by 2050 and about 1 m by 2100, together with a rise in the temperature of the surface ocean layer of between 0.2° and 2.5°C.

These scenarios pre-date, but are in line with, the assessment of Working Group I which, for Scenario

3