$\$$ 3.
r equals $\begin{aligned} & \text { E.s } \\ & \text { E.c }\end{aligned}=$ Ratio of moduli of elasticity of steel to concrete.
M a Bending moment in inch lbs.
F a Factor of safety.
Assumptions
h equals 12 inches.
F " 4
C a 2,500 lbs. per square inch.
S " 56,000 " ". " "
r " 10 .
Formulae
(1) $\mathbf{K}=\begin{gathered}\mathbf{C} \\ 2 \mathbf{F}\end{gathered}\left[\begin{array}{c:c}1 & 1- \\ \mathbf{S} & 1 \\ 1+\mathbf{C r} & 31+\frac{\mathrm{S}}{\mathrm{Cr}}\end{array}\right.$
(2) $\mathrm{p}=$

$$
\left.2 \begin{array}{l}
\mathrm{S} \\
\mathrm{C}
\end{array}\right)\left(1+\frac{\mathrm{S}}{\mathrm{Cr}}\right.
$$

(3) $\mathrm{M}=\mathrm{KhT}^{2}$

Solving equation (1) for K wa have

$K=86.57$
Substituting these values in formula $3\left(\mathrm{M}=\mathrm{KhT}^{3}\right)$ we have $T=\sqrt{\frac{M}{K \times 12}}$
Solving formula 2, we have
$\mathrm{p}=.007$,
According to formula 1, the theoretical batter for the back of the wall is 1 in 19, but a batter of 1 in 12 was adopted.
Column 7. Diameter of rods to correspond with areas in Col. 6.
Column 8. Similar to Col. 3.
Column 9. Area of steel=Tensile Strain in lbs. divided by working stress of steel per square inch $(12,000)$.

