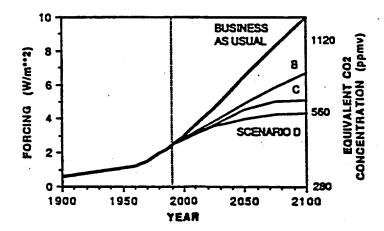
can sequester increasing atmospheric carbon dioxide remains to be quantified.

If the oceans become warmer, their net uptake of carbon dioxide may decrease because of changes in (i) the chemistry of carbon dioxide in seawater (ii) biological activity in surface waters and (iii) the rate of exchange of carbon dioxide between the surface layers and the deep ocean. This last depends upon the rate of formation of deep water in the ocean which, in the North Atlantic for example, might decrease if the salinity decreases as a result of a change in climate.

Methane emissions from natural wetlands and rice paddies are particularly sensitive to temperature and soil moisture. Emissions are significantly larger at higher temperatures and with increased soil moisture; conversely, a decrease in soil moisture would result in smaller emissions. Higher temperatures could increase the emissions of methane at high northern latitudes from decomposable organic matter trapped in permafrost and methane hydrates.


As illustrated earlier, ice core records show that methane and carbon dioxide concentrations changed in a similar sense to temperature between ice ages and interglacials.

Although many of these feedback processes are poorly understood, it seems likely that, overall, they will act to increase, rather than decrease, greenhouse gas concentrations in a warmer world.

Which gases are the most important?

We are certain that increased greenhouse gas concentrations increase radiative forcing. We can calculate the forcing with much more confidence than the climate change that results because the former avoids the need to evaluate a number of poorly understood atmospheric responses. We then have a base from which to calculate the relative effect on climate of an increase in concentration of each gas in the present-day atmosphere, both in absolute terms and relative to carbon dioxide. These relative effects span a wide range; methane is about 21 times more effective, molecule-for-molecule, than carbon dioxide, and CFC-11 about 12,000 times more effective. On a kilogram-per-kilogram basis, the equivalent values are 58 for methane and about 4,000 for CFC-11, both relative to carbon dioxide. Values for other greenhouse gases are to be found in the full report.

The total radiative forcing at any time is the sum of those from the individual greenhouse gases. We show in the figure below how this quantity has changed in the past (based on observations of greenhouse gases) and how it might change in the future (based on the four IPCC emissions scenarios). For simplicity, we can express total forcing in terms of the amount of carbon dioxide which would give that forcing; this is termed the equivalent carbon dioxide concentration. Greenhouse gases have increased since pre-industrial times (the mid-18th century) by an

Increase in radiative forcing since the mid-18th century, and predicted to result from the four IPCC emissions scenarios, also expressed as equivalent carbon dioxide concentrations