For let the curve lines BK' and BK be supposed each to move on the point B as a center equally towards each other, they must meet on, and coincide with the curve line BGD'—because the arcs KD' and K'D', are equal by construction, and the curvilinear triangles ts's and sr'r, and the curvilinear triangles tn'n and uv'v, will coincide with the curvilinear triangles de'e and e'ff—also the arcs of variation t's'' and tu'', will cach coincide with the arc ef'—hence their ultimate ratios are equal (Lem. 8); consequently the variation t's'' is to the variation sr'',—as the variation tn'' is to the variation t's'' and the variation t's'' is to the variation t's'' interfore t's'' must be the arcs of variation, on the common curve line, or arc dk, of the point d towards e, and of the point e towards f.

LEMMA 10.

FIG. 7. From the point B as a center, with the distances Bk' and Bi', describe the arcs k'k'' and i'i'',—the arc kk'', shall be the variation of k towards i, and the arc ii'' shall be the variation of i towards h.

For from the point A, with the distances Ao' and Aq', describe the arcs ox' and qq'; and from the point B as a center, with the distances Bq' and Bx', describe the arcs q'q'' and x'x''; Also from the point C as a center, with the distances CK and Co, describe the arcs Ky' and op,' and from the point B, with the distances Bp' and By', describe the arcs p'p'' and y'y''.

Now let the curve line BK and BK', each move upon the point B as a center, towards the curve line BD', they must each coincide with BD', (Lem. 9,)---lence the triangles qq'o' and o'.x'K' and the triangles qp'o, and oy'K, will coincide, and be similar and equal to the triangles hi'i, and ik'k; consequently their ultimate ratios are equal, and the variation Ky'', is to the variation op'', as the variation K'x'', is to the variation ii'', (Lem. 9,)---therefore kk'' must be the variation of the point k towards k, and k'', the variation of the point k towards k.

THE SOLUTIONS.

Case First.—When the arc Bdef ... hikD', is a curve line, through intersections described through points of equal distances on the arcs BD and BC, (Lem. 1, Fig. 1.)

SOLUTION FIRST.

PROPOSITION 1.

THEOREM.

FIG. 7. From the point B with the distances Bk and Bi, and from the point D', with the distances D'e" and D'f", describe the intersections a and b, and through the points a and b, draw the straight line abn meeting the curve line BGD' in the point n.—The straight line abn, shall be that upon which, by variation of the points d and e, to the points e' and f" the enrye line abc ... n (tig. 6), shall coincide with its chord an.

For as the curves V'p'q ... n", and Vpq ... n', are each upon the opposite side of their chords, to the curve a b'c' ... n on the are BD (fig. 5)—it is evident that intersections described through the points of variation n" and v", and s" and r", (fig. 7,) must give the curve lines on the same side of their chord as Vpq ... n' and Vpq ... n'-and therefore be also on the opposite side to the curve line $a'b'c' \dots n$ (fig. 5)—because the variations tu" and ny" are proportional to tu and uv-and ts" and sr" are proportional to ts and $^{\prime}$, and therefore as the curve line described by intersections through the points n'' and v'' shall vary, the are BK' will move towards BC on the center B, and that described through the points s" and r", the nrc BK, must move towards BD on the center B, (Lem. 10) --- so that the purves of intersections described through the points of variations n" and v", and s" and r", will come to be, each in one straight line with their chords; Now it is evident from their ultimate ratios being equal, that the distances K'n" will become equal to Ks", and Kv" equal to Kr", and BK' equal to BK, and Bor equal to Bo'; but this can only be possible on the curve line BD', on which is the intercepted are dk common to both of the series of area 1K and 1"K', and upon dk are the common variations de" and ef", (Leta. 9.); consequently it is through the points e'' and f'' and h and i, in this case, that the intersections described from the points B and D', forming the curve line ab ... n will only coincide with the chord an.