mechanical drawing

and 30 in outfit, procure two drawing-boards 42 inches long and 30 inches wide, to receive double elephant paper. Have
the boards fastening thein, without cle ts or any ingenious devices for ber at least paper, and made from thoroughly seasoned tim$T T_{0}$ least $1 \frac{1}{4}$ inches thick.
$i_{11} g$ and doards are required, so that one may be used for sketchwith and drawing details, which, if done on the same sheet ${ }^{8 t} t_{\text {and }}$ elevations, dirties the paper and is apt to lower the arsociations. Details
be to a lails and sketches should, when made on a separate sheet, one a larger scale than on the elevations. By changing from the cole to another, the mind is schooled in proportion, and upon the finished sizes and dimensions is more apt to be based In the finished work than the drawing itself.
sizteenth sizg to regular scales, such as a half, eighth, or of graduated scales. There is nothing more convenient for a into various draughtsman than to be able to resolve dimensions ti_{0} val sous scales; and the use of a common rule for fracuaturally and trains the mind so that the computation come Use a plain after a time almost withouc effort.
side of a plain T square, with a parallel blade fastened on the "quare the head but not impeded into it. In this way, the set of the can pass over the square head in working at the edges square drawing. It is something strange that a draughting this, and still ever have been made in any other manner than board allow the set squares to come near to the edge of the Aard.

A bevel square is often convenient but should be an indefordent one; a T square that has a movable blade is never fit Watter what use; combinations in drafting instruments, no bations, like their character, should be avoided; such combi-
fet just the those in marhinery, are generally mistakes, and For set the reverse of what is intended.
mo merial is ${ }^{\text {in }}{ }^{4}$ ooth, inal is so good as ebonite; such squares are hard, If col ; they will to moisture, and contrast with the paper If $n_{\text {r }}$; they will also wear longer than those of wood.
${ }^{\text {Alfaibility, squares are used, pear wood is best, because of its }}$ ${ }^{8} q$ vares by A coat or two of shellac varnish improves such
Fent by making them smooth, and preventing their deranFor by moisture.
find ; such sets ars, avoid everything of the elaborate or fancy the ure at first are for amateurs, not engineers. It is best to qui best make, ouly such instruments as are really required, of re; in thise, and then to add others as necessity may re-
One pair in way experience will often suggest modifications.
Dens, twir each of $3 \frac{1}{2}$-inch and 5 .inch compasses, two ruling
the essex wood scale, a common rule, and a hard pencil, are
At the bsential instruments for machine drawing.
form the b ginningents for machine drawing.,
or the item in the work, it is best to use Whatman's paper,
food as roll paper, which, of the best manufacture, is quite
In man any other, which, of the best manufacture, is qui
olaced, for the sheets that are likely to be removed and re-
beper, for the purpose of modification, as working drawings
the driven along the edges at intervals of 2 inches or less;
Dapaper can be very slightly damped before fastening in this
ifl er, and if the opery slightly damped before fastening in this
Were quite as smooth and convenient to work upon as though
Wh pasted down; the tacks can be driven down so as to be
If luction or below the surface of the paper, and will offer no If a dran to the squares.
Le board, the paper bhould be pasted down. To do this, first
b) pare the 8) jpare the mucilage, and have pasted down. To do this, first of absorbent pape, and have it ready at hand with some the edges with a sponge, and then apply the mucilage uponge, for a width of $\frac{1}{2}$ inch; then set the edge of the angles. In this that it will lean against the desk at assistauce. In this position the paper can be applied rubbing. Then, by placing the paper along the he edges are pasted firmly to the board, the paper slips
up a part of drying. If the moisture from the edges which are If left in this condition, the center would paper be pulled loose at the edges by con-
traction before the paste had time to dry. It is therefore necessary to paste over the center of the sheet with a wet sponge at intervals, until the edges adhere firmly, when it can be left to dry, and will be tight and smooth. In this operation much depends upon the judgment of the learner and much will be learned by practice. One of the most common causes of trouble in mounting is not having the mucilage thick enough ; when thin, it is absorbed by the wood or paper, and is too long in drying; it should be as thick as can be applied with a brush, and made from clean gum arabic or tragacanth; glue is not so good.

Thumb tacks are but of little use in mechanical drawing, except for the most temporary purposes, and can very well be dispensed with altogether: they injure the drafting boards, obstruct the squares, and disfigure the sheets. $-J$. Richards in Engineering.

THE GLORIES OF THE STARLIT HEAVENS.

by R. A. PROCTOR.
If the eye could gain gradually in light-gathering power, until it attained something like the range of the great gauging telescopes of the Herschels, how utterly would what we see now seem lost in the inconceivable glories thus gradually unfolded. Even the revelations of the telescope, save as they appeal to the mind's eye, would be as nothing to the splendid scene revealed, when within the spaces which now show black between the familiar stars of our constellations, thousands of brilliant orbs would be revealed. The milky luminiosity of the Galaxy would be seen aglow with millions of suns, its richer portions blazing so resplendently that no eye could bear to gaze long upon the wondrous display. But with every increase of power more and more myriads of stars would break into viow, until at last the scene would be unbearable in its splender. The eye would seek for darkness as for rest. The mind would ask for a scene less oppressive in the magnificence of its inner meaning; for even as seen, wonderful though the display would be, the glorious scene would scarce express the millionth part of its real nature, as rerognized by a mind concious that each point of light was a sun like ours, each sun the center of a scheme of worlds such as that globe on which we " live and move and have our being."
Who shall pretend to picture a scene so glorious? If the electric light could be applied to illumine fifty million lamps over the surface of a black domed vault, and those lamps were here gathered in rich clustering groups, there strewn more sparsely, after the way in which the stars are spread over the vault of heaven, something like the grandeur of the scene which we have imagined would be realized-but no human hands could ever produce such an exhibition of celestial imagery. As for maps, it is obviously impossible hy any maps which could be drawn, no matter what their scale or plan, to present anything even approaching to a correct picture of the heavenly host. There is no way even of showing their numerical wealth in a single picture.

It is not till we have learned to look on all that the telescope reveals as in its turn nothing compared with the real universe, that we have rightly learned the lessons which the heavens teach, so far, at least, as it lies within our feeble powers to study the awful teaching of the stars. The range of the puny instruments man can fashion is no measure, we may be well assured, of the universe as it is. The domain of telescopically visible space, compared with which the whole range of the visible universe of stars seems but a point, can be in turn but as a point compared with those infinite realms of star-strewn space which lie on every side of our universe, beyond the range -millions of times further than the extremest scope-of the instruments by which man has extended the powers of visions given to him by the Almighty. The finite-for after all, ininfinite though it seems to us, the region of space through which we can extend our survey is but finite-can never bear any proportion to the infinite save that of infinite disproportion. All that we can see is as nothing compared with that which is: all we can know is as nothing; though our know. ledge "grow from more to more," seemingly without limit. In fine we may say (as our gradually widening vision shows us the nothingness of what we have seen, of what we see, of what we can ever see), not, as Laplace said, The Known is Little, but The Known is Nothing; not The Unknown is Inmense, but The Unknown is Infinite.-Knouledge.

