(1980) indicate that the reactive species may be the biradical, formed by the decomposition of the original monozonide.

Summary: The status of our knowledge of the gas-phase tropospheric oxidation reactions is:

- Three reactions have been identified as being potentially important.
 - a. HO radical. The rate constant appears to be well-established.

DELL

- b. HO₂ radical. The rate constant is not wellestablished.
- c. CH₃O₂ radical. The rate constant is not well established.
- 2. The $SO_2 + O_3 +$ alkenes reaction may be an important dark reaction.

Table 2-4: Rate Constants for Hydroxyl, Peroxyl, and Methoxyl Radicals

Reaction	Second order rate constant, cm ³ mole-1 _s -1	Source
$\begin{array}{c} \text{HO + SO}_2 \rightarrow \text{HOSO}_2 \\ \rightarrow \text{H}_2\text{SO}_4 \end{array}$	$(1.1 \pm 0.3) \times 10^{-12}$	Calvert et al. (1978)
$\text{HO}_2 + \text{SO}_2 \rightarrow \text{HO} + \text{SO}_3$ $\rightarrow \text{H}_2\text{SO}_4$	$>(8.7 \pm 1.3) \times 10^{-16}$	Calvert et al. (1978)
	<1 x 10 ⁻¹⁸	Graham et al. (1979)
	<2 x 10 ⁻¹⁷	Burrows et al. (1979)
$CH_3O_2 + SO_2 \rightarrow CII_3O + SO_3 \rightarrow II_2SO_4$	$(5.3 \pm 2.5) \times 10^{-15}$	Calvert et al. (1978)
	5 x 10 ⁻¹⁷	Sanders and Watson (1981)