the hoavenly bodies. Its basis is precisely of the samo charactor, the coincidence of tho olsorved fats with theoretical requirements."
Ifeaving these authoritios on the dectrino of ovolution, I will now givo you a sketch of LaPlaco's (1780) nebular theory, opitomized from Sponcor's "Progress; Its Law and Cause:" "If this hypothesis bo truo," says Mr. Spencer, "Tuo Genesib of the solar system supplias one illustation of this law. Lot us assume that the matter of which tho sun and planots consist onco oxisted in a diffised form, und that from tho gravitation of its atoms thore rosultod a grodual concontration. By this hypothesis tho solar systom in its nascont state existed as an indefinitoly extonded and nearly homogonoous medium-a nedium nearly homogoneous in density, in tomperoture, and in othor physical attributes. Tho first advance towards consolidation resulted in a differontiation between the occupied space which the nebulous mass still filled, and the unoccupied spaco which it proviously filled. There arose in this state or condition a contrast in density and a contrast in temperature, botween the inside and the outside of this mass, and as a constant property of matter is motion, there arose throughout the volume rotary movements, whoso velocities varied according to their distances from its conter. Thaso differentintions incroased in number and degreo until there was ovolved the organizal group of sun, planets, and satelites which we now know. A group which presents numerous contraste of structure and action among its momiters. There are the immense contrasts between the sun and the planets in bulk and in weight, as well as the subordinate contrasts between one planet and another, and betweon tho planots and their satellites. Thero is tho similarly marked contrast botween tho sun as almost atationary and tho planots as moving round him with great velocity, whilo there are the sacondary volocities and periods of the severni planets, and between their simple revolutions and the double ones of their satellites, which have to nove round their primarios whilst moving round the sum. There is yet the further strong contrast betweon the suu and the planots in respect of temnorature; and there is reason to suppose that the planots and satellites differ from oach othor in their proper beat as well as in the heat they recoivo from the sun." Now, how is this heat gonomted, and how is it kept up? There is the theory known as the metcoric theory of the sun's Leat. Tyndall sayn: "Inowledge such as wo now possess has caused philosophers, in speculating on the mode in which the sun is nourished and his supply of light and heat kept up, to supposo the heat and light to bo caused by tho showering down of moteoric mattor on tho sun's surface." This is Moyer's hypothesis, worked out in 1848.

What foundation is there for this bypothesis? That heat is gonerated by motion, friction, compression, and percussion Tyndall givea an oxporiment in one of hie lectures. Ho cools a razor by contact with ice, rubs it on a hono without oil, as if to sharpen it ; he places the razor against the face of a senoitive pile with a neodlo attachod which marks slighter variations of temperuture than the ordinary thermometer. The audience sees a purerful deflection of tho needlo, which dnclares the razor to be hot. To prove heat by compression he places a pieco of deal wood between the platas of a small hydraulic press and squeczes it forcibly; aftor comprossion lio brings the wood in contact with tho pile, which declares licat has been generated by compression. To produce heat from porcussion ho trites a coll lead bullet, places it on a cold anvil, and strikes it with a cold sledgo hammer; examino the lead and it is hented; and says: "If wo could gatior op all tio laat generated by the stroko of the sledge and apply it rithout loss mechanically wo should be able by means of it to lift tho hammor to the leight from which it fell." Now, what proof havo we for that,? Dr. Meyer, of Heilbronn, in Germany, enunciated tho exact relation which subsists botween heat and rork, giving tho numbor which is now known as tho mechanical quivalent of heat. Mr. Jonle, of Manchestor, indopendently of Neger, exporimentod to provo the invariability of tho relation which subsists betrecon heat and ordinary mochanical force. Ho placed water in vessels, agitatod that mater by paddles driven by
measurable forces, and doterminod both the amatent of hent developed by stitring tho liquid and the amount of labor expemed in the process. He did tho same with mereury and with sperm oil. Ho also caused disks of cast inon to rub against each other, and moasured the heat produced by thoir friction and the force cxpended in overcoming it. IIo urged wator through capillary tubes and determined the amount of heat genorated by tho friction of the liquid ngninst the sides of the tubes. This is a delicato experiment.
"Tho results of his experiments," says T'yndall, " leave no shadow of donbt upon the mind that, undor all circumstances, the quantity of hat gonerated by the same amome of forco is fixed and invariable." Again, Count Rumford, whilo boring a cannon at MLunich in 1798, was so forcibly struck by tho amome of heat doveloped in tho process of boring that ho contrived an apparatus for measuring the amount of heat generated by friction. Ife constructed a hollow cylinder of iron, filled the cylinder with ls: pounds of water at 60°, caused the bottom of the cylinder to ho pressed ajainst the part of the cannon where friction was greatest. An hour efter tho friction was commenced the temperature of the water was 107°; the second hour it was 1422°; at two hours and thirty minutes nfter the commencement the water aotually boiled. By theso and numberless other experiments it was found that the quantity of heat which would raise ono pound of water ono dogroo in temporature is exnctly equal to what would bo generated if a pound weight, aftor having fallen througl: a height of 772 feet, has its moving forco destroyed by collision with tho earth. Conrersely, tho amount of heat necessary to raise ono pound of water one degree in temperature would, if all were applied mecanically, bo compotent to raiso a pound weight 772 feet high, or it would mise 772 pounds ono foot ligh. Thus the quantity of heat necessary to raise the temperaturo of a pound of water ono degreo being takon as a standard, 772 foot pounds constituto what is called the mechanic.l equivalent of lieat. In establici thase statements Sir. Tyndall performs many experiments. Ho drops a leaden ball from tho top of the lecture romm ; measuree the beat genorated in the deseent and concussion. Fires a rido bullet at a target; mensures the heat generated by the known velocity. "But a rifle bullet, if formed of leat, moving at a velocity of 233 feot in a socond, would gencrate, on striking a target, an amount of leat which, if concentrated in tho bullci, would raise its temperature 30°; with six times this velocity it will genorato thirty-six times this amount of heat. Hlence, 30 times 30 , or $1,080^{\circ}$, would represent th. augmentation of temporature of a riflo ball on striking a target with a velocity of 1,338 feet a secoud. This is more than sufficient motion to fuse tho lead." From these and other considerations he concludes that it is manifest that if wo kno x the velocity and accighle of any projectile wo can calculate with ease the amount of heat developed by the destruction of its moving force." For example: "Knowing as wo do the voight of tho carch and the velocity with which it moves through space, a simplo calculation would enable us to determino the exact amount of heat which would be developed, supposing the earth in bo stopped in hor orbit." Moyer and Helmholte have made this salculation, and found that the cyuntity of heat generaced by this solossal shock would be quite sufficient not onls to fubo the entire carth, but to reduco it in great part to vapor." "Thus," says Mr: Fiyndall, " hy the simple stoppago of the earth in its orijit, the clements might be caused to 'melt with fervent heat.' The amount of heat tans doveloped would be equal to that derived from tho combustion of fourteen globes of coal, each equal to tho carth in rangnitude. And if, after the stoppage of its motion, the earth should fall into the sun, as it assuredly would, the amount of heat genernted by the blow would be equal to that doveloped by tho combustion of 5,000 worlds of solid carbon."

Heat can proluce mechanical foree, and mechanical forco an produco heat. Somo common quality must therefore unite this agent and the ordinary forms of mochanical porior. This is proved to bo motion.

There are tro theories of leat-tho material and the dynamical

