doors nad sashes, wooden furniture, and, as in the case or hotels, etc., thickly upliolstered furniture, curtaips, portictes, carpets, mattings and the like, it follows that, even if in other respecis fireproof, that is, if ihe building be indestructible by virtue of its iron joists and concrete floprings, its brick partition walls and iron roofing, still does it and must it contain a latge aniount of combustible and smoke producing material, and the gases more than enough when nsceniding from one singic bwer foor or strry to stifie all the inmates of the floor above. The smoke and heated gases from below ivill immediately ascend through every stairway, through every elevator or sliding cupboard, through ventilating and hot air or hot water flues, or recesses in the walls. They will follow up along and through the holes made and left by plumbers around soil and sink pipes, electric and other wiring, and they must be counted on as surely us the fact that they cannot be excluded, eliminnted or got rid of.

It follows that as no one can face such sinoke and heated air or gases for more than a few seconds at a time, without the risk of choking, the way out of the burning building must be immediate. To have to grope through a long and maybe winding eorridor 10 reach a firc escape at the end of it is inadmissible, impracticable. No one can stand the smoke for a sufficient lengit of time to do so. The fire escape must be at hand. If must be everywhere, with nothing more to do to reach it than to step over your window sill on to an adjoining balcony, or, in the case of a person occupying a front room in a hotel, cross the corridor into and through the rear roant opposite and through the window thereaf on to the said balcony leading to the fire escape stairway. There is no other possible certuinty of escape than by the means 1 propose. Portable fire escapes may be and have been efficient in cases of private residences, or buildings where there are only halr in dozenior a dozzen people to be saved, the brigade having time to mount the ladder and make as ntany trips up and down as there are human beings to remove befure the fire gets sufficient headway to render escape impossible by that means-but many impediments exist nowadays to the free use of the fireman's ladder, such as lines of wire and cables for telegraphing, telephoning, electric lighting, and celectric transit, and oftentimes the ladder enneot reach the higher upper floors or stories.
Elevators cannot be relied on for evasion in case of fire, as, though the car and lis surroumdings be thoroughly fireproof and the fire or flames cannot travel through them from one floor to another, they act as chimney flues, the smoke and heated nir rising through them to the exclusion of any possibillty or escape in that direction. The iron stairways stipulated in the Boston and New York fire acts are no better than the elevators just alluded to, except that until invaded by smoke and hot air from a fire below, a. larger anumber'of inmates might pass out in tnuch less tinie, than by the comparatively slower elevator process, due to the necessiey intermittency of its trips up and down.
Fire escape tadders attached to outer walls are now to be found in very many instances, and it is unfortumate that we altach too much importance 10 their existence and seem to think that provided buildings have such ladders all its right and safe. Now, this is in most cases quite the contrary. Such ladders are no doubt of some use to able-bodied nien and women, but of what use, let me ask your, gentemen, is such a ladder to a child, to a young and delicate female, to an old man or wonaan, to an infirm person. even if it could be easily reached from any part of the building, which it never is and never can be, since, as before stated, no man, wompn or child ean before being stified reach such a ladder through a long and winding corridor: Again, there are those who, though otherwise alte to lake care of theniselves, become dizzy and telpless the nooment they look down from nay beight, as from the upper floors of a building, and to whon the ladder woukd also prove nseless. For a factory, no doubs. a hadder may answer. as the inmates are all able-bodied persons; lut what about an asylum for the old and infirn, what about a convent, a college, with dormitories generally in the attic or upper floors, the other stories being used as cinss rooms; elc; what is'to be done in the ease of a hotel with bedrooms in the upper flats and not extending below the third.
I think I may be allowed to sny in my own name and in the name of the whole profession that mothing but a regular and cormomodious stairway can be considered sate under the circunssances, und this stairway must have no uirect communication with any part of the building from which escape is to be had. This is imperative, and a sine gua non of the absolute safely of the proposed system : for, us already stated, if the stairwny to be used as a fire escape does communicate with the luilding or apartments to be subserved, and if any one of these apartments be on fire, the nscending column of smoke and heated gases will eftectually prevent escape in that direction. The communication must be indirect, that is, it must be from the building to an outer landing and from the latter to the stairway, thus preventing the possibiligy of the existence of any current through the shaft capable of drawing the smoke and heated air into it.
Now, the proprictor of the hotet, if it be one, will not (you may take your oath on it) for the sake of an eventuality which may never ocour. deprive himself of a single fond of otherwise avaitable space within the walls of the buildings: nnd th the stairs were buith within the building, and taking up. as they. would and must do, the space of an ordinary upper floor bedroom, that is one room on each flat or 5 to 6 rooms in the total height, the scheme would be objected 10 and no proprictor might be found to carry' it out. And not only nust no otherwise available space be devoted to the purpoce or sactificed as it would be said to be, to a doubtful eventuality: but nelther would the manager of the estabilishment allow of any of his arrangements or requirements being sactificed in the premises. None of the communications from one apartment to the other on the ground or any other of the floors of the edifice nuast be in any way imperderl.

In the case of all buildings with interior courts for light and air the preposed fire escape stairway must, as shown on the accompanying sketches, be erected in the rear of the building, where it can be done inexpensively of $12^{\prime \prime}$ or even $8^{\prime \prime}$ brickwork, instead of towards the from where it would baic to be made an architecturil feature of the building and, therefore, ten times more cosily than where proposed, as in such case the galleries, would also have to be made architectural features of the design and so mach more costly on that account. The stairway being in the rear, and as, to render escape effective and complete, the front or open must be reacherl, then must a corridor be made right through and through the building, and this cor. ridor must be fireproof to be of any real use; and to be fireproof it must be like the siairs "themselves, cut off from all possible communication with the renainder of the building, or in other words there must be no other door or opening into it or leading from it than the doorway from the foot of the stairs towards the rear and the door at the front or the outer end of it. This corridor should be situated at ground floor level, the level at which the inmates nuust escape into the adjoining street. But this would cut of communication between those portions of the building on either side of the corridor. No other solution, therefore, presents ilself than that of elevaling the corridor to a beight sufficient to pass under it.
Now, we all know what a mezzanine is, or an entre sol as they call it in lirance. This mezzanine or divatr story has a most important function to perform by being taken in or left out to suit. For instance, say the clear height of the first or main story of the building, whatever it may be, is is or ceven 17 leet. This may be divide:l into a 9 or 10 ft . and a 7 ft . story with an allowance of one foot or less in height for the floor between the two. and while the emtrance hall or ycstibule, stores, dining, meeting and other large and important rooms on sidd hrst hoor would be made of the full height of the story, or 18 feet, other rooms for sccondary purposes and of smaller dimensions would only be made say io fi. high with a 7 ft . mezzanine above them, to be devoted to servanis' bedrooms and other comestic purposes with convenient stairs' for access to them here and there. Through this mezzanine or einfre sol would the fireproof corridors therefore pass, as shown in section, andithus the proposed system of fire escape becomes con?. plete, certain and effective, without the possibility of giving rise to one single complaint on the part of the 'proprietor. tenant. occupant or manager of the establishment: for an inspection of the plan and section will show thrit from every story of the building above the ist from which escape can be had direct into the street, flight will be simultaneous and, so to say, instantaneous, every occupant of a rear room stepping out direct over bis low window sill into a narrow iron gallery for open latice work, not to interfere with the light below) communicating with the stairway, while each oceupier of a front room has merely to cross the corridor and pass through the roon opposite his own to get access to the gallery staircase. There can be no jamming of the orcupants of one floor by those of another, for since the exit from the room is simultaneous on each flat the occupants thereor will be simultaneously or at the same time descending their respective fighs of stairs.
It only remains to say that in the case of a church or place of worship, \boldsymbol{n} music hall, a theatre or cireus, with more than a single tier of boxes or palleries, the fire escape galleties or balconies must of course be towurds the strect or open, in which case they would be made ornamental features in the design, as in the new theatre at Antwerp in Flanders where to end, of the tiers of boxes there is an outer gallery or a balcony continuous around the building and 25 exit doors to ejch story with stairs descending from the fifth tier to the fourth, from fourth to third and third to second, whence the last fight of stairs or that to reach ground level is temporarily suispended to preclude entrance to the buildings and released in case of fire by merely pressing the foot upon a spring.
Now, genilemen, you will be naturally curious as to the cost, thnt is, the additional cost of carrying out the scheme, and to leave no room-lor doubt in the premises 1 annex an estimate thereor, founded on a closely detailed caiculation of all the quantities, where on cubing the building at only to sents a foot we get say $\$ 160,000$ for a botel 200 feet by 100 feet and too feet in height or five stories, exclusive of basement and attics or mansard story (7 floors in ali). The fire eseape, including, as already set forth, iron gal. leries around each of the two inner courts, one to each story above the first or main floor, with two stairways, one to each court and, corresponding fire proof corridors and stairs to street level, comes to $\$ 6.546$ ot very nearly $4 \mathrm{z} / 10$ per cent. of cost of building. In the case of a similar building used for manufacturing purposes and composed of large apartments and where the furniture and upholstering being a minimum and the smoke from an incipient firc below much less in quantity and less intense, and thercfore less hurry required in vacating the premises, the length of gallery to each floor might be reduced by half, which would reduce the additionat cost of carrying out the sjstem 10 something less than 3 per cem. of the cost of the strusture.
festimateid aiditional, cost of pirg escaipe hor any mullding cakRYING OUT THE SYSTEM.
Taking the building to be 200×100 fi. or 20,000 ff. area with deduction of two open courts of $40 x 50$, we get net arean of $16,000 \mathrm{ff}$., which into 160 ft . high, gives $1,600,000$ ft. cube at $10 e t s-\$ 160,000.00$.

FITR ESCAPE.

Girth of courts, $180 \mathrm{fl} \times 2=360 \mathrm{ft} \times$ tiers $=1800 \mathrm{ff}$, lin. iron balcony al feet wide (see delatiled estimate of f. lin.) an $\$ 1.85$ Add cost of enclosure walls tostairs (see detalled est.) $\$ 800$
Add cost iton stairs (see also detailod estimate) $\$ 315.00 \times 3$ Add cost of fire proof corridors through the building from tear to
not quite $4 \mathbf{1} / 10 \%$ on cost of Iniliking.

