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and it then follows again from the theory of differential 
equations of the second order that y = y. + y=, that is,
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We obtain for this case the equations 
R. sin 0 = — b. sin p
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During the variation of the outflow the following equa­
tions are effective :
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The integration constants R and 0 may be obtained 

from the initial phase and the constants b and P by form­
ing the equations

dyi b
— = — cos (P -i------) = — cos P cos-------------sin P sin —

s = — e
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P amounts generally to about — which relation simplifies

the computation of R and 0.
The variation ceases (as we assumed) after the time 

t = ir.T. The values which correspond to the elevation 
of the water surface and velocity at that time are obtained 
by the formulae :
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We then introduce these values in the differential equation 
and combine the members containing cos t/T and sin t/T
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For further investigation, the formulae of case (A) 

may be applied. In order to simplify matters, in the de­
termination of the further movement, we measure the time 
from the instant of the beginning of the constant outflow 
and logically we must use the limiting values of the pre­
ceding phase for the determination of the integration con­
stants R1 and 0i.

If we do not hinder the variation of the outflow but
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maintain the law (1 + / sin —), we see that the move-
T

ment of the water surface in the surge tank takes the 
form of a forced oscillation ; where the influence of the 
first member decreases with the increase of t and this the

and as these equations hold good for all values of t, the 
terms in both parentheses must become o. 1 
obtains two equations with the unknowns b and P and
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One thus
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quicker the larger the value of — becomes in the member
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The movement of the level of the water surface |s 

merely that of a harmonic oscillation. In such cases it *s 
well known that the phenomenon of resonance may occur, 
if the period of the actuating influence has the same dura­
tion as the swinging bodies’ own period, that is to say. 
if, in the case mentioned t — T. The value of the amp'*' 
tude of the forced oscillation is then
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For the determination of the integration constants 
R and 0, it must be considered that for

z — — *h, ;
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t = o ; T2/T„2 TT2s — o.y = o;


