UNIVERSITY OF LONDON.

INTERMEDIATE EXAMINATION IN ARTS, JULY, 1882.

1. Express $\sqrt{\frac{26.54 \times 0.004321}{0.00001357}}$ correctly to

the nearest integer.

=92 nearly.

2. Prove that any number is divisible by 9 if the sum of its digits is divisible by 9. Prove also that a number is divisible by 11 if the sum of the odd digits (i.e. the 1st, 3rd, 5th, etc.) exceeds or is less than the sum of the even digits (i.e. the 2nd, 4th, 6th, etc.) by a number divisible by 11.

Bookwork. See Todhunter, articles 444,

3. What must the rate of interest be that a sum of money may accumulate at compound interest to double its amount in 20 years?

$$R=2^{\frac{1}{2}} \log R = \frac{1}{2} \log 2 = .0150515.$$

By making use of the given log we find the required rate to be 3½ per cent,

5. Reduce to their lowest terms

(a)
$$\frac{ax+2}{2a+(a^2-4)x-2ax^2}$$

$$=\frac{ax+2}{(ax+2)(a-2x)} = \frac{1}{a-2x};$$
(b)
$$\frac{x^4+5x^5+6x^2+5x+1}{x^4+3x^5-2x^2+3x+1}$$

$$=\frac{(x^2+4x+1)(x^2-x+1)}{(x^2+4x+1)(x^2+x+1)} = \frac{x^2+x+1}{x^2-x+1}.$$
7. The first term of a geometrical progression.

7. The first term of a geometrical progression is a, and the tenth term is b, find the nth term.

The tenth term = $ar^{\circ} = b$, $r = \left(\frac{b}{a}\right)^{\frac{1}{6}}$

$$n^{\text{th}} \text{ term} = ar^{n-1} = a \begin{pmatrix} b \\ a \end{pmatrix}^{\frac{n-1}{9}}$$
.

8. Solve the equation

$$\frac{2}{x^2 + 2x - 2} + \frac{3}{x^2 - 2x + 3} = \frac{x}{2}.$$

$$\frac{2x^2 - 4x + 6 + 3x^2 + 6x - 6}{x^4 - 4x^2 + 3x^2 + 6x - 2x^2 + 4x - 6} = \frac{x}{2}$$

$$\frac{5x + 2}{x^4 - 3x^2 + 10x - 6} = \frac{1}{2}, x = 0,$$

$$x^4 - 3x^8 = 10$$
, $x^2 = 5$ or -2 , $x = \pm \sqrt{5}$ or $\pm \sqrt{-2}$. $x = 0$; $\pm \sqrt{5}$; $\pm \sqrt{-2}$.

9. The sum of the squares of two numbers is 650, and their product is 323; what are they?

Let x = one number, $\frac{323}{x} =$ other number; $x^3 + \left(\frac{323}{x}\right)^2 = 650$, $x^4 - 650x^4 = -104329$ $x^2 - 325 = \pm 36$ $x^2 = 361$ or 289,

10. What is the present worth of a perpetual annuity, £10 payable at the end of the first year, £11 at the end of the second, and so on, increasing £1 each year; interest being taken at 4 per cent.?

 $x = \pm 19 \text{ or } \pm 17.$

$$S = 10 \left\{ \frac{1}{1.04} + \frac{1}{(1.04)^2} + \dots \right\}$$

$$+ \frac{1}{(1.04)^2} + \frac{2}{(1.04)^3} + \dots = s_1 + s_2, \text{ say}$$

$$s_1 = 10 \cdot \frac{1}{1.04} = 250,$$

$$1 - \frac{1}{1.04} = 250,$$

$$s_2 = \frac{1}{(1.04)^2} + \frac{2}{(1.04)^3} + \frac{3}{(1.04)^4} + \dots$$

$$\frac{s_2}{(1.04)} = \frac{1}{(1.04)^3} + \frac{2}{(1.04)^4} + \dots$$

$$\therefore s_2 \left(1 - \frac{1}{1.04} \right) = \frac{\frac{1}{(1.04)^2}}{1 - \frac{1}{1.04}}$$

$$s_2 = 625, \dots S = 875.$$

CLASSICS.

G. H. ROBINSON, M.A., WHITBY, EDITOR.

ANSWERS TO CORRESPONDENTS.

"E. L. C."—Your papers on Cæsar will probably appear in December number.

"A. F."—The question of phonetics is a very wide one. You will probably find