e in the
different
brigin of
that of
s denser
approxwn into
recently
ological

ian may a rock except ehemiristic of his way of rock beyond ical hye chemn as to Sterry e older estions arkable lle and

rentian
cat and
nee of
r with
great
ded by
he sea
living
even
Nay,

sidue

' iron

oxide by organic matters. In short, here we have evidence of new factors in world-building, of land and ocean, of atmospheric decay of rocks, of deoxidizing processes carried on by vegetable life on the land and in the waters, of limestone-building in the sen. To afford material for such rocks, the old Ottawa gueiss must have been lifted up into continents and mountain masses. Under the slow but sure action of the carbonic dioxide dissolved in rainwater, its felspar had crumbled down in the course of ages, Its potash, soda, lime, magnesia and part of its silica had been washed into the sea, there to enter into new combinations and to form new deposits. The crumbling residue of fine clay and sand had been also washed down into the borders of the ocean, and had been there deposited in beds3. Thus the earth had entered into a new phase, which continues onward through the geological ages; and I place in your hands one key for unlocking the mystery of the world when I affirm that this great change took place, this new era was inaugurated in the midst of the Laurentian period.

Was not this time a fit period for the first appearance of life? Should we not expect it to appear, independently of the evidence we have of the fact? I do not propose to enter here into that evidence, more especially in the case of the one well characterized Laurentian fossil, Eozoon Canadense. I have already amply illustrated it clsewhere. I would merely say here that we should bear in mind that in this later half of the Lower Laurentian, or if we so choose to style it, Middle Laurentian period, we have the conditions required for life in the sea and on the land; and since in other periods we know that life was always present when its conditions were present, it is not unreasonable to look for the first traces of life in this formation, in which we find for the first time the completion of those physical arrangements which make life, in such forms of it as exist on our planet, possible.

This is also a proper place to say something of the doctrine of what is termed metamorphism. The Laurentian rocks are undoubtedly greatly changed from their original state, more especially in the matters of crystallization and the formation of disseminated minerals, by the action of heat and heated water. Sandstones have thus passed into quartities, clays into slates and schists, limestones into marbles. So far, metamorphism is not a doubtful

⁵ br. Hunt has now in preparation for the press an important paper on this subject, read before the National Academy of Sciences.