Advertisements on page 222.

THE

Railway and Shipping World

With which is incorporated The Western World. Eistablished 1890.
Devoted to Steam \& Electric Railway, Shipping, Express, Telegraph \& Telephone Interests.
Entered according to Act of the Parliament of Canada, in the year 1902, by Acton Burrows, at the Department of Agriculture.

THE QUEBEC BRIDGE.

This bridge is being constructed over the narrowest portion of the River St. Lawrence
betwe between Mortion of the River St. Lawrence
aniles when and Quebec, about $61 / 2$ lates west of the commercial centre of the beter city. The river at this point flows between high rocky cliffs on both sides, the Waterway being about $1,900 \mathrm{ft}$. at low tide, the about $2,500 \mathrm{ft}$. at extreme high tide, he tidal rise varying from a minimum of maxim 14 ft . to a maximum of 20 ft . The about 180 depth of water in the channel is 6 to 7 km ft ., the tidal current being water knots an hour. The depth of waiter decreases rapidly towards the haw river piers, where at extreme waimum it is io feet deep, the 30 ft . Thum depth at high tide being 30 ft . These piers are $1,800 \mathrm{ft}$. apart
The channel will be crossed with
a suspended span and two cantilever armspended span and two cantilever ture, thaking an unsupported strucmain $1,800 \mathrm{ft}$. long between centre of Ppan iners, which will be the longest anchor the world. The length of main arms on each side of the ain span will be 500 ft ., with one ${ }^{2 p} \mathrm{p}_{\mathrm{t}}$.ach span of 220 ft . at each end * Wutmen anchor piers and terminal structure, The total length of the ecture, including abutments, will $3,300 \mathrm{ft}$. A clear headway of 150 and higeen underside of lower chords channel will tides for vessels in the e a cleall be provided. There will itusses ar width of $621 / 2 \mathrm{ft}$. between in the for two steain railway tracks from a centre, divided by screens bighway single electric track and main on either side. The coping main piers will be 30 ft . above rstruct and the highest point of 330 ft . The de coping will be 330 ft . The depth of the susspan at the centre will be 120 ft . The substructure will ist of two main piers, two anchor and two abutments. The piers are placed at the foot nd becky cliffs bounding the river beyond the limits of high water. solid anchor pier is founded solid rock commonly called ded grit. The south anchor pier will be at $8_{5} \mathrm{on}$ a formation of hard blue clay $8_{5} \mathrm{ft}$. in thickness, containing large cons. Both piers are of granite backed concrete, 105 ft . long by 24 ft . wide at 56 . and about 30 by 111 ft . at the base, 36 ft . high from bottom of anchorage to gent base of steel towers. The north ment is built into the face of the cliff, the summit, at which point the surface main of loose masses of rock overiying seamy body, which is of a very irregular to be rature, large quantities of which be removed before a solid foundation
could be obtained. The abutment on the south side of the river will be built on the same formation. Both are massive U-shaped structures built of granite backed with concrete, having the same lateral dimensions, 80 ft . wide by 40 ft . deep, the maximum height of front wall for both abutments being about 40 ft . The main pier on the north side of the channel is built of concrete, faced with massive rock-faced granite masonry-with the exception of the upper part of the pier for a depth of 19 ft . below coping-which is laid with solid granite blocks throughout.

GCY C. DCNN, M. CAN. SOC. C.E.

The coursed masonry commences below the river bed on a level with the top of the caisson, which is entirely buried. The total height of pier from top of caisson to coping is $57 \frac{1 / 2}{2}$ feet, at the latter point its length is 133 ft. , and width 30 ft . The caisson was sunk through a very compact mass of granite boulders bound together with cobble stones and fine gravel. In such hard material the daily progress was very slow, the penetration only averaging about 4 inches in $2+$ hours, and at times it was too small to be recorded. Finally the caisson became wedged by the pressure from the outside, which held it up
after all the material was removed from under the cutting edge. After several unsuccessful attempts to continue sinking with a load on the roof of about 20,000 tons, the excavation was discontinued, it being con sidered unsafe to risk such a load unsupported any longer. Concreting in the working chamber was then commenced and finished in the short space of six days, working day and night. The pier was built to a height of 42 feet above the top of caisson before the latter was ceiled, the remaining portion being completed seventeen days later. The excavation was performed by three gangs, each working 8 -hour shifts in every 24 hours. Each gang averaged 50 men exclusive of foremen.
The caissons for the two main piers are 150 by 49 ft . and 25 ft . high. They are built of southern pine, brought to the site in the rough, and milled by a plant consisting of a circular saw, butting saw and a sizing machine cutting four sides at a time. The caisson for the north pier was built on the north shore about $4,000 \mathrm{ft}$. east of the pier site, and was successfully launched on June 20, 1901, towed into position, and made fast in a berth previously prepared, in the short space of 70 minutes. At the site of the two main piers, the water having a depth of only about so ft, at low tide, and as the caisson draws about 12 ft . unloaded, it grounded at low tide, but floated at high tide, the water being then about 29 ft . deep. The concrete was being placed in the crib-work on top of the working chamber of the caisson for the north pier, on June 28 , and excavation in the chamber was being carried on only during low tide, and it was continued until sufficient concrete was put in to overcome the buoyancy of the air pressure, after which the excavation was continued without interruption. The walls of the caisson are vertical and are made with double courses of planed timber, the outside course being laid horizontally, and the inside course, which does not extend above the deck, being set vertically. The timbers in the outer course are halved together with oblique joints at the corners, have three square lapped splices, breaking joints in every course, and are fastened together with 1 in . drift bolts, 30 ins . long, and 3 ft . apart up to the ith course from the bottom, and 4 ft . apart above that. The walls are sheathed outside with a double course of crossed diagonal planks, each course being secured with a row of $1 / 2$-in. spikes 2 ft . apart, and staggered. There is a deck of three crossed layers of timber which forms the roof of the working chamber, $71 / 2$ ft . high in the clear above cutting edge. The ends of these timbers extend through the ver-

