sensation and excitation is due to the perception or discrimination of the sensation. On this theory it is not the real sensation which is experimented upon but perceived sensation; and in the process of taking the sensation up into our apperceptive life it is modified as to its intensity. example, the single fact of attention to a sensation changes its intensity: what effect might not the direction of the mind to it as is required in the above experiments, have upon it? In answer to this interpretation it may be said that it can never be critically established since we have no means of getting at the true worth of sensation except as it is interpreted in our attentive consciousness. By intensity we mean intensity to us, in our intellectual life and to speak of the intensity of sensations in any relative way, apart from the apperception and comparison of them is to become unintelligible. Wundt, however, has an ulterior end in view-the support of his doctrine of apperception-and he himself admits that he would not exclude the physiological interpretation.

The third interpretation, which is probably the true one, makes the disproportion spoken of purely physiological. According to the advocates of this theory, the law of cause and effect does hold in this case, as in all others, but a part of the internal cause is lost in the transmission by the nerves. so that the true excitation at the brain centre is less than at the peripheral organ, and is in direct proportion to the intensity of the sensation which it causes. Briefly stated, the following facts tend to support this view: I, the phenomenon of nervous arrest would lead us to expect a diminution of the stimulus between the organ and the brain; 2, nerve action is dissipated in heat; 3, force is lost in the exciting of the internal organ, hence, by analogy, we would expect the same in the stimulation of the centres; 4, the general parallel between electricity and nerve-action would indicate resistance to be overcome in the one case as in the other; 5, on general grounds a loss of force may be expected in an extended or complicated mechanism.