ESTIMATES FOR CHANGES BY 2030

(IPCC Business-as-Usual scenario; changes from pre-industrial)

The numbers given below are based on high resolution models, scaled to be consistent with our best estimate of global mean warming of 1.8°C by 2030. For values consistent with other estimates of global temperature rise, the numbers below should be reduced by 30% for the low estimate or increased by 50% for the high estimate. Precipitation estimates are also scaled in a similar way.

Confidence in these regional estimates is low

Central North America (35°-50°N 85°-105°W)

The warming varies from 2 to 4°C in winter and 2 to 3°C in summer. Precipitation increases range from 0 to 15% in winter whereas there are decreases of 5 to 10% in summer. Soil moisture decreases in summer by 15 to 20%.

Southern Asia (5°-30°N 70°-105°E)

The warming varies from 1 to 2°C throughout the year. Precipitation changes little in winter and generally increases throughout the region by 5 to 15% in summer. Summer soil moisture increases by 5 to 10%.

Sahel (10°-20°N 20°W-40°E)

The warming ranges from 1 to 3°C. Area mean precipitation increases and area mean soil moisture decreases marginally in summer. However, throughout the region, there are areas of both increase and decrease in both parameters throughout the region.

Southern Europe (35°-50°N 10°W- 45°E)

The warming is about 2°C in winter and varies from 2 to 3°C in summer. There is some indication of increased precipitation in winter, but summer precipitation decreases by 5 to 15%, and summer soil moisture by 15 to 25%.

Australia (12°-45°S 110°-115°E)

The warming ranges from 1 to 2°C in summer and is about 2°C in winter. Summer precipitation increases by around 10%, but the models do not produce consistent estimates of the changes in soil moisture. The area averages hide large variations at the subcontinental level.

will increase as the globe warms, the critical temperature itself may increase in a warmer world. Although the theoretical maximum intensity is expected to increase with temperature, climate models give no consistent indication whether tropical storms will increase or decrease in frequency or intensity as climate changes; neither is there any evidence that this has occurred over the past few decades.

Mid-latitude storms, such as those which track across the North Atlantic and North Pacific, are driven by the equator-to-pole temperature contrast. As this contrast will probably be

weakened in a warmer world (at least in the northern hemisphere), it might be argued that mid-latitude storms will also weaken or change their tracks, and there is some indication of a general reduction in day-to-day variability in the mid-latitude storm tracks in winter in model simulations, though the pattern of changes vary from model to model. Present models do not resolve smaller-scale disturbances, so it will not be possible to assess changes in storminess until results from higher resolution models become available in the next few years.