DEPARTMENT OF MARINE AND FISHERIES.

Newfoundland, nearly as far west as Cabot Strait. (2) Flat or pan ice, forming fields or in broken pieces, usually not more than 6 feet in thickness, but sometimes as thick as 10 feet. This often jams or shoves along the shore or between islands, and may form masses 20 feet or more in thickness, but it can never be mistaken for berg ice. In this flat ice a distinction is sometimes made between 'Northern lee,' which finds its way in through Belle Isle Strait under certain conditions, and 'Gulf ice,' which forms in the Gulf itself. As the effect of the wind and current upon it is the same in either case, the distinction is not of importance in this connection. (3) River ice, from the St. Lawrence River and its estuary. This is also flat ice, and in the Gaspé region it can be readily distinguished by its appearance from the Gulf ice.

The berg ice, from its great depth in the water, will evidently move with the undercurrent; and it will not be appreciably affected by the wind. These bergs do not necessarily indicate the direction of the current as affecting shipping, except when the surface current has also the same direction. They show in reality the average direction the current has, between the surface and the depth of their draught. This draught is limited to about 30 fathoms by the depth of Belle Isle Strait. They are thus of much value as an indication of the general movement or circulation of the water.

The relation of the flat ice to the wind and current requires some little consideration. It is, of course, just as true of this ice as of the berg ice, that the greater part is under water; but, as it is almost always in broken pieces, more or less piled and with upturned edges, the wind has a much greater hold upon it in proportion to its total weight, than on the berg ice. Even when this is allowed for, its depth in the water still gives the current a greater hold upon it than the wind has. For example, if such ice is drifting with a current in a given direction, and the wind is blowing across that direction at right angles, the ice will seldom be set more than two points, or three at the most, off the true direction of the current. When the ice becomes soggy or water-soaked and loses its edges, as it does later in the spring, it will set still more correctly with the current.

When the surface current itself is moving in the direction of long-continued or prevalent winds, as it often does in the Gulf, the flat ice naturally follows the same direction too. Also in regions where the current is tidal, and the ice in calm weather would drift as far in the one direction with the flood tide as in the other direction with the ebb, the direction in which it makes on the whole will depend upon the wind. It is probably for these reasons that it is so often said that the ice drifts with the wind ; although this merely expresses the fact, without distinguishing between the relative influence of the wind and the current upon it.

There is also a direct effect which the ice has upon the strength of the current in regions where the direction of the surface drift is under the influence of the wind. The broken and upturned edges of the ice give the wind a much greater hold upon the water than it otherwise would have. Hence during long continued winds the speed of the current is appreciably greater than if the ice were not present. This is undoubtedly the explanation of the common belief which is expressed by saying that "the ice makes its own current." It may be well to recall that the weight of the ice itself is the same as the water which it displaces; and therefore, the wind has no greater mass to set in motion in producing a surface current than if the ice were to melt and re-fill the hollow which it makes in the water; while the presence of the ice gives the wind a better hold than it would have upon the surface of open water, free from ice.

There is one condition of the ice which may prevent it from showing correctly the drift of the water. When it is set against an island or headland and packed together for a long distance out, with open water beyond, it may circle round as on a pivot. The outer edge of the pack may thus make a long sweep very different in its path from the true set of the current; and its movements also become irregular, as vessels caught in such ice which are near together in the evening, may be ten or fifteen miles apart in the morning.

GENERAL CIRCULATION IN THE GULF.

A knowledge of this general circulation is important to mariners, as it includes all the more constant currents, and it also shows the direction which the surface current