Removal efficiency level, %

50-80%

Process Listing

- 1. As above, with normal amount of catalyst
- 2. Combustion modifications (all types) followed by non-catalytic reduction (ammonia injection without catalyst)
- 3. Combustion modifications alone (for lower levels of removal minimize boiler problems)
- 4. Low-NO_x burners

1. Staged combustion^a

- 2. Low-NO_x burners^a
- 3. Flue-gas recirculation (except for coal^a)

^a Used in combination with others, if necessary, to achieve the required reduction level.

The capital costs associated with combustion modification techniques for the control of NO_X emissions from thermal power plants are estimated at:

Techniques	Capital Cost	Lowest Achievable NO _X Emission Level
Low Excess Air	\$0	0.9 1b per 106 Btu
Staged Combustion (over-fired air)	\$2-3/kW	0.7 1b per 10 ⁶ Btu
		6

Low-NO_x Burners \$2-\$10/kW 0.4-0.5 lb per 10⁶ Btu

The capital cost estimates for NO_x control vary considerably due to site-specific variables (e.g., boiler type). The uncertainty in the cost data ranges from -10 percent to +30 percent. Furthermore, the cost of flue gas treatment (FGT) processes for NO_x control have not yet been determined.

Below 30%