H Cl 1.2474 times heavier than water. Hence it will be seen, that as compared with the standard water, H₂ S O₄ is the heaviest, H N O₃ the next, and H Cl the lightest; and this is the order in which they will arrange themselves, H₂ S O₄ being at the bottom.

VI. (a). "Describe the manufacture of Hydric Sulphate (H₂S O₄). (b). What impurities may it contain? (c). Account for their presence."

(a). Take a large glass bottle, and place in the bottom a thin layer of water. Arrange four tubes entering it near the bottom, and a waste pipe at the top. Through the first tube pass steam into the bottle. Through the second pass in Sulphuric Dioxide (made by burning sulphur). Heat a flask containing Copper turnings and Nitric Acid, to make Oxide of Nitrogen (N2 O3), which takes up an atom of Oxygen from the air, and becomes N₂ O₃ and allow this to enter by the third tube. The fourth tube is employed to admit, from time to time, a current of air. The action that takes place is this: when the S O2 and N2 O3 come in contact, the latter readily gives up one-third of its O to the S O2 to form S O3; and this, uniting with the steam (H2 O) forms H2 S O4 which is absorbed by the water in the bottom of the vessel. Now, the moment the N₂ O₃ gives up part of its O to the S O2, the N2 O2 which is left unites with the O of the air, which is being admitted from time to time, to form N₂ O3, which immediately hands over one-third of its O to the S O2 to again form S O3 and so the same operation is repeated ad infinitum, the (N₂ O₂) being merely the carrier of O from the air to the SO₂. The solution of H₂S O₄ at the bottom of the vessel will be found to be very weak, but may be concentrated by evaporation.

- (b). The impurities of commercial H₂ S O₄ are Lead, Arsenic and Nitric Acid.
- (c). The Lead comes from the leaden chambers in which the H₂S O₄ is made.

The Arsenic, as an impurity of sulphur,

passes over with the S O₂ and mingles with the H₂ S O₄.

The Nitric Acid is owing to the presence of its constituents in the chamber where the H₂ S O₄ is made.

VII. "Give equations for the manufacture of 'a) Hydric Sulphide, (b) Sulphuric Anhydride, (c) Carbonic Oxide, (d) Chlorine, (e) and explain its bleaching power."

- (a). Fe S + H_2 S O_4 = H_2 S + Fe S O_4
- (b). $S O_2 + O$ (in presence of heated and finely divided Platinum) = $S O_3$.

(c).
$$\begin{cases} 1. & C O_2 + C = 2 C O. \\ 2. & 4 C O_2 + 3 Fe = 4 C O + Fe_3 O_4 \end{cases}$$

(d). $Mn O_2 + 4 H Cl = 2 H_2 O + Mn Cl_2 + Cl_2$

(c). The bleaching of Chlorine depends on its strong affinity for Hydrogen. If we put a piece of dry litmus paper into a jar of dry Chlorine no action will take place; but, if we moisten the litmus paper, the Chlorine will immediately bleach it. The reason of this is that the Chlorine unites with the Hydrogen of the water and liberates in the fibres of the material the Oxygen, which, being in a nascent state, and hence possessed of intense combining power, unites with the vegetable coloring matter to form other compounds which are colorless.

VIII. "What volume of O is required to completely burn 10 litres of H₂ S, and how much of each product would be formed?"

5 litres of O are required to unite with the H; giving 10 litres of H_2O ; 10 litres of O are required to unite with the S, giving 10 litres of S O_2 ; in one equation—10 litres of $H_2S + 15$ litres of $O_2 = 10$ litres of $O_2 + 10$ litres of $O_2 = 10$ li

IX. "How much commercial H₂ S O₄ containing So per cent. of pure acid could be obtained by roasting 300 kilogr. of Pyrites (Fe S₂) in the air, when only 80 per cent. is given off?"

For every 5 Fe S2 used we get 4 S2 to enter