of her predecessors are olaburate poems. Without doube hiterature has gained on the whole from ts sub mission to the teachings of the scientife spirit. Yet the results have not in all cases beon as satisfactory as in tho works of Thacker:ly and (ieorge Litiot; for Walt Whiman and \%ola are also products of the Realistic schuol.

Another result of the indluence of the scientific spirt is to be found in the stricter application of the laws of verse. This is perlups nuwhore more mani fest than in the dilterence betwseon the modera Euglish sumnet and ite predeceseurs. It one thate any puom in fourteen haes was entitled to rank as such. The son n has now to be written in strict accordance with the laws of tho best Itillian sumeteers. An is natural, the strict appheation of law to a haggage and hitorature, hie linglish, remarkable for its lawlessness and disregard of tixed rule, has resulted in an artifi clalnty, whech has had a vury deteriorating offect upon hiteratule at the present day. It will be sufficient to rofer to the somnets of D. (i. liossetti as an instance. The attempts, too, of Mr. Swinburne and others to mtruduce French furms of verse into the English language have been far from happy in their result.
l'erhaps in no case has the scientific spirit ron greater triumphs than in the change it has effected in the manner of translation from one language inte another. Une of the best sjecimens of translation in the old style is Edward Fairfax's version of Tasso's "Je. rusalem lelivered." It is delightful reading as an English puem, but with Tasso's meaning the greatest hiberties are tahen. Chapman who executed his iranslation of Homer in the leign of Elizaleth shows no scruple un several uccasions about oxpanding a single line of the uriginal into several of his own. Macaulay's juke about Homer becouning " translated" in Pope's hands is pruverbial. To the uld theory of translation there is little fear of our ever returning. Not only the exact meaning of the original has to bo preserved, but its manner and spirit. In the case of poetry, analogous metres have to be selected. No one has done better work in reforming our theories of translation than Matthew Arnold whose lectures on translating lomer were delhvered in 1s61. Milman, Conington, Bayard Taylor, Longfellow and Levis Camptell may be mentioned as some of the most successful among modorn translators; while Sewell's translation of the "Georgics" and Robert Browning's version of the "Agamemnon" are instances of tho modern theory pushed to a ridiculous extreme.

[^0]
general specirtcations for ordin. ary iron highway bridges.

be J. A. L. Wadeeli, C. E., I. A. Sc., Ma. F.,
I'rof, of Civil Emyinetrin! in ther Chuitrrsity of Tohio, Japan.

As the heading mplies, the folluwing specifications are ejeneral in their nature. they are intended for urdinury irun highway bridges and are designed to presont to partios interested in bridgo cunstruation, moro espectally those upon whom falls the responsibility of letting bridge contracte, what in tho writer's opinion are the requisites for a good structure. The part of these specifications relating to the proportioning of man nembers and detals is in accurdance with the writer's provious papors on " liridgo Pins-Their Sizos and Bearings," "A Systom of llesigning Highway Bridges," and "Metails in Ordinary Iron Bridges," while the parte relatidy tu teste of material is taken from Prof. II. T. Bovey's excollent little work on "Applied Mechanics." 4 few other portions are copied irom approved specifications.

By ordinary highway bridges aro mennt simple trusa bridges, having no novel and pecular features, such as a combination uf arches and trusses, cantilevers, ote, in short the bridges which one meets with avory day in travelling through the Cnited States. These specifications are genoral enough in their nature to inchade all the ordinary styles of truss, but are more particularly applicablo to the Pratt and Linvill. Which are by lar the most common trusess for irol highway bridges in America.

Highway bridges may be divided into threo claseen, viz. . those for cties and their suburbs which are subjected to the contenaed application of heavy loads, those for cities and their suburbs which are subjecied to the occusiunal application of heavy luads; and those for country roads, where the traffic is lighter. Lat us call these divisions classes A, li and C.
Live Load.- Specifications.

Sjan in fuet.	Muving losd per squaro foot.		
Classos A and B.	Class C.		
0 to 50	100 jounds.	80 nounds.	
50 to 150	90	4	80
150 to 200	80	4	70
300 to 300	70	4	60
300 to 100	60	4	50

Dead Lorel.-The dead load is to include the weight of all the iron and wood in the structure excepting: those portious resting disectly on the abutments, and whose weights do not affect the stresses in the trusses ; also, if necessary, an allowance for snow, mud, paving or any unusual fixed load, that may ever be placed upon the bridge. Pine lumber is assumed to weigh two and a half lbs. per ft. C. m. and oak lumber four and a third lbs. per foot. C. m. Should in any bridge of, or below, two hundred feet span the calculated dead load differ more than seven per cent., or in any bridge above two hundred foet sjan more than four per cont. from that assumed, tho calculations of stresses, etc., aro to be made over with a new assumed dead load.

Wind Pressurc.-The wind preesure per square foot

[^0]: Vibratory Movempat of Behls.- M. Mathien, a French experimenter, has recontly studied the vibrations of bells, consulerng tho case of an ordinary bell in which the theckuess in any meridian increases from summit to base. The essential differences between the vibmtory movement of a bell and that of a plane plate is that, while in the latter the longitudinal or taugental movement and the transvorse movement aro given by independent equations, the normal and tangential mution m the former are given by threo equations which are not independent. The pitch of tho notes of a bell does not change if the thickness warmes in the same relation throughout evory part, buce the terms depending on the square of the thechess may be neglected, at least for tho graver partials. It is impossiblo to construct a bell so that it shall vibrato only normally, and with a hammer the tangential vibrations are of the same order as the normal vibrations. A purely tangential motion can be realized only with a spherical bell of constant thickness.

