

If a complete discussion were made, it would be found that for a length $\frac{l}{5}$ from the centre, an hyperbola intervenes, inereasing the negative moments, and giving also positive noments as shown by double lines. But the results would not be changed materially.

If M_{4} is the bending moment produeed by a distributed lond p on a single span l we have a parabola

$$
M_{1}=-\frac{p l}{2}(l-z)-\frac{p(l-z)^{2}}{2}
$$

$$
\mathrm{M}_{5}=\frac{p l}{16}(l-z) \text { and } \mathrm{M}_{6}^{\prime}=\frac{p l}{8}(l-z)
$$

and it is easy to see that

$$
\begin{aligned}
& M_{2}=M_{4}-M_{3} \\
& M_{1}=-M_{5} \\
& M_{3}=-\left(M_{6}-M_{4}\right)
\end{aligned}
$$

whieh gives an easy method to have the bending moments.
The author thinks that the first formula given may have some praetieal value, and he would like to have the opinion of bridge engineers abont it, as well as the opinion of mechanieal engineers as to the value to be given to the eonstants.

The coefficients to be deterwined are P_{p} and V . In the Canadian Pacific Ry. specification p is taken at 3000 , and in caleulations of many bridges the writer has taken $P=3730$ and $V=105^{\prime} 0^{\prime \prime}$ and has found very little difference when taking every wheel into aecount.

For spans under 105 feet and over 21 feet he hats taken

$$
P=4600, p=3240, V=21^{\prime}-0^{\prime \prime}
$$

and the formula becomes

$$
\begin{aligned}
& R=3730-730\left(1-\frac{105}{n l}\right)^{4} \text { for spans over } 21^{\prime} \\
& R=4600-1360\left(1-\frac{21}{n l}\right)^{2} \text { for spans over } 21^{\prime} \\
& R=4600 \quad \text { for spa2s under } 21^{\prime}
\end{aligned}
$$

