GLYCONEOGENESIS

injected subcutaneously (in rabbits), a certain amount of dextrose appears within a short time in the urine. It is possible that glycolaldehyde might be formed in normal metabolism out of glycocoll (CH_aNH₂COOH).

Glycerine (CH₂OH—CHOH—CH₂OH) is also readily converted to hexose in the laboratory, becoming first of all oxidized to dioxyacetone (CH₂OH—CO—CH₂OH) and glyceric aldehyde (CH₂OH—CHOH—CHO). Two molecules of either of these may then polymerize to form a hexose. When this process occurs in the body, the hexose formed is dextrose. The sorbose-bacterium may also oxidize, and then polymerize glycerine to form a hexose.

Lactic acid (CH₃CHOH—COOH) is completely converted to dextrose in the body. This process must involve a rearrangement of the molecule, and subsequent polymerization (7). The related substance, propyl alcohol (CH₃—CH₂—CH₂OH), is also converted to dextrose in phlorhizin dogs.

Coming now to the amino-acids, it has been found that glycocoll, alanin (i), aspartic, and glutamic acids, cause a marked increase in the dextrose excretion of phlorhizin dogs, whereas leucin and tyrosin have no action in this regard. By determining the extent of the dextrose increase in the manner described above. Lusk and Ringer (2) have been able to show how the molecule of these substances must be split in order to produce the dextrose. The following Table is a summary of their results and conclusions :

Acid and Formula.	Average Amount of Dextrose pro- duced in Body.	Probable Change.	Dextrese that would be produced by Change.
$\begin{array}{c} & \text{Glyeocoll} \\ \text{CH}_2\text{NH}_2\text{COOH} \end{array}$	13.43 (five dogs, one dog gave 15.77)		16.00
i. alanin CH ₃ CHNH ₂ COOH	18.77 (two dogs)	Do.	20.22
Aspartie acid COOH—CH ₂ —CHNH ₂ —COOH	12.42 (four dogs)	Three of the four C atoms converted to dextrose	13.52
Glutamic acid COOH CH ₂	13-31	Three of the five C atoms converted to dextrose	12+24
CH2-CHNH2 COOH			

(Twenty grammes of the various amino-bodies were given to phlochizin-diabetic dogs.)

217