These preliminary investigations being made, we are now prepared to establish the general equation of the three moments.

In Fig. 5 , let A, B and C be three consecutive points of support of a continuous beam, the spans considered being, as shown, l_{a} and $l_{c} . \mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}$ and R_{c} are the reactions at A, B and C; and $S_{a}^{\prime}, S_{a}, S_{b}^{\prime}, S_{b}, S_{c}^{\prime}$, S_{c} are those portions of R_{a}, R_{b} and R_{c} caused respectively by the loads on the span to the left and those on the span to the right; this can be understood by examining the diagram. Let us call the moments at A, B and C respectively M_{a}, M_{b} and M_{c}, and let us take the origin of coordinates for the span l_{2} at A and for the span l_{c} at C.

Referring to Eq. 5, the value of D will reduce to zero if the points considered be two points of support, for they are upon the same level; we can then write $0=\sum_{\mathrm{b}}^{\mathrm{a}} \frac{x \mathrm{M}}{\mathbf{E} \mathrm{I}} d x$, the $\sum_{\mathrm{b}}^{\mathrm{a}}$ denoting that the points considered are A and B.
$A_{8} \mathrm{E}$ and I are both finite quantities, we must have
 Eq. 8, gives :
$0=\sum_{\mathrm{b}}^{\mathrm{a}}\left[x \mathrm{M}_{1} d x+\mathrm{M}_{\mathrm{a}} \frac{\left(l_{\mathrm{a}}-x\right) x}{l_{\mathrm{a}}} d x+\mathrm{M}_{\mathrm{b}} \frac{x^{2}}{l_{\mathrm{a}}} d x\right]$ or writing the integral sige instead of Σ

$$
\begin{gathered}
0=\int_{0}^{l_{\mathrm{a}}}\left[x \mathrm{M}_{1} d x+\mathrm{M}_{\mathrm{a}} x d x-\mathrm{M}_{\mathrm{a}} \frac{x^{2}}{l_{\mathrm{a}}} d x+\mathrm{M}_{\mathrm{b}} \frac{x^{2}}{l_{\mathrm{a}}} d x\right] \\
0=\int_{0}^{l_{\mathrm{a}}} \mathrm{M}_{1} x d x+\mathrm{M}_{\mathrm{a}} \frac{l_{\mathrm{a}}^{2}}{2}-\mathrm{M}_{\mathrm{a}} \frac{l_{\mathrm{a}}^{2}}{9}+\mathrm{M}_{\mathrm{b}} \frac{l_{\mathrm{a}}^{2}}{3}
\end{gathered}
$$

or multiplying by $\frac{6}{l_{\mathrm{a}}}$
$0=\mathrm{M}_{\mathrm{a}} l_{\mathrm{a}}+2 \mathrm{M}_{\mathrm{b}} l_{\mathrm{a}}+\frac{6}{l_{\mathrm{a}}} \int_{0}^{l_{\mathrm{c}}} \mathrm{M}_{1} x d x$.
Passing to the span l_{c}, we can establish in a similar manner the following equation :-
$0 \leqslant \mathrm{M}_{\mathrm{c}} l_{\mathrm{c}}+2 \mathrm{M}_{\mathrm{b}} l_{\mathrm{c}}+\frac{6}{l_{\mathrm{c}}} \int_{0}^{l_{\mathrm{a}}} \mathbf{M}_{2} x d x$.
Adding Eqs. 9 and 10, gives
$0 \equiv \mathrm{M}_{\mathrm{a}} l_{\mathrm{a}}+2 \mathrm{M}_{\mathrm{b}}\left(l_{\mathrm{a}}+l_{\mathrm{c}}\right)+\mathrm{M}_{\mathrm{c}} l_{\mathrm{c}}+\frac{6}{l_{\mathrm{a}}} \int_{\mathrm{o}}^{l_{\mathrm{a}}} \mathbf{M}_{1} x d x$

$$
+\frac{B^{\cdot}}{l_{\mathrm{c}}} \int_{0}^{l_{\mathrm{c}}} \mathbf{M}_{2} x d x . \quad[\text { Eq. 11.] }
$$

Let us suppose for an instant that there is only one
Weight P which produces the infinite number of moments represented by M_{1} in the expression $\int_{0}^{l_{\mathrm{a}}} \mathrm{M}_{1} x d x$, The reaction at A will be $\mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}}$ and the value
of M_{1} for any point between A and the point of application of P will be $\mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}} x$: the reaction at B will $P \frac{z}{l_{2}}$ and the value of M_{1} for any point between B and the point of application of P will be $\mathrm{P} \frac{z}{l_{\mathrm{a}}}\left(l_{\mathrm{a}}-x\right)$; whence we can write the equation

$$
\begin{gathered}
\int_{0}^{l_{\mathrm{a}}} \mathrm{M}_{1} x d x=\int_{0}^{z} \mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}} x^{2} d x+\int_{z}^{l_{\mathrm{a}}} \mathrm{P} \frac{z}{l_{\mathrm{a}}}\left(l_{\mathrm{a}}-x\right) x d x \\
=\mathrm{P} \frac{l_{\mathrm{a}}-z}{2} \frac{z^{3}}{3}+\mathrm{P} z\left(\frac{\mathrm{a}_{\mathrm{a}}^{2}}{2}-\frac{z^{2}}{2}\right\rangle-\mathrm{P} \frac{z}{l_{\mathrm{a}}}\left\langle\frac{l_{\mathrm{a}}^{3}}{3}-\frac{z^{3}}{3}\right\rangle \\
=\frac{1}{6} \mathrm{P} z\left(l_{\mathrm{a}}^{2}-z^{2}\right)
\end{gathered}
$$

and for any number of loads

$$
\int_{0}^{l_{2}} \mathrm{M}_{1} x d x=\frac{1}{6} \sum^{2} \mathrm{P} z\left(l_{\mathrm{a}}^{2}-z^{2}\right)
$$

Similarly $\int_{0}^{l_{\mathrm{c}}} \mathrm{M}_{2} x d x=\frac{1}{6} \sum_{\sum}^{\mathrm{c}} \mathrm{P} z\left(l_{\mathrm{c}}{ }^{2}-z^{2}\right)$
Substituting these values in Eq. 11, gives

$$
\begin{aligned}
0=\mathrm{M}_{\mathrm{a}} l_{\mathrm{a}} & +2 \mathrm{M}_{\mathrm{b}}\left(l_{\mathrm{a}}+l_{\mathrm{b}}\right)+\mathrm{M}_{\mathrm{c}} l_{\mathrm{c}} \\
& +\frac{1}{l_{\mathrm{c}}} \Sigma^{\mathrm{a}} \mathrm{P} z\left(l_{\mathrm{a}}^{2}-z^{2}\right) \\
& +\frac{1}{l_{\mathrm{c}}} \Sigma^{\mathrm{c}} \mathrm{P} z\left(l_{\mathrm{c}}^{2}-z^{2}\right)
\end{aligned}
$$

which is the ordinary form of the equation of the three moments, Σ^{2} and Σ^{c} denoting that the summations are each to extend over one span from A and C respectively.

Taking moments about the right hand ond of l_{a}, gives $\mathrm{S}_{\mathrm{a}} l_{\mathrm{a}}-\sum_{\mathrm{E}} \mathrm{P} l_{\mathrm{a}}-z+\mathrm{M}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}}$ from which we have

$$
\mathrm{S}_{\mathrm{a}}=\Sigma^{\mathrm{a}} \mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}}-\frac{\mathrm{M}_{\mathrm{a}}-\mathrm{M}_{\mathrm{b}}}{l_{\mathrm{a}}}
$$

Taking moments about the left hand end of the same span, there results
$\mathrm{S}_{\mathrm{b}}{ }^{1} l_{\mathrm{a}}-\Sigma^{\mathrm{a}} \mathrm{P} z+\mathrm{M}_{\mathrm{b}}=\mathrm{M}_{\mathrm{a}}$ from which we have

$$
\begin{array}{r}
\mathrm{S}_{\mathrm{b}}{ }^{\prime}=\Sigma_{\mathrm{a}} \mathrm{P} \frac{z}{l_{\mathrm{c}}}-\frac{\mathrm{M}_{\mathrm{a}}-\mathrm{M}_{\mathrm{b}}}{l_{\mathrm{a}}} . \\
\text { Similarly } \mathrm{S}_{\mathrm{b}}=\Sigma^{\mathrm{c}} \mathrm{P} \frac{z}{l_{\mathrm{a}}}+\frac{\mathrm{M}_{\mathrm{c}}-\mathrm{M}_{\mathrm{b}}}{l_{\mathrm{c}}}
\end{array}
$$

and $S_{c}{ }^{\prime}=\Sigma^{c} P \frac{l_{c} \cdot z}{l_{\mathrm{c}}}-\frac{\mathrm{M}_{\mathrm{c}}-\mathrm{M}_{\mathrm{b}} .}{l_{\mathrm{c}}}$
By inspecting Fig. 5, as before stated, we can see that

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{a}}=\mathrm{S}_{\mathrm{a}}{ }^{\prime}+\mathrm{S}_{2} \\
& \mathrm{R}_{\mathrm{b}}=\mathrm{S}_{\mathrm{b}}{ }^{\prime}+\mathrm{S}_{\mathrm{b}} \\
& \mathrm{R}_{\mathrm{c}}=\mathrm{S}_{\mathrm{o}}{ }^{\prime}+\mathrm{S}_{\mathrm{c}}
\end{aligned}
$$

